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A B S T R A C T

Visual working memory (VWM) represents the surrounding world in an active and accessible state, but its
capacity is severely limited. To better understand VWM and its limits, we collected data from over 3,800 par-
ticipants in the canonical change detection task. This unique population-level data-set sheds new light on classic
debates regarding VWM capacity. First, the result supported a view of VWM as an active process, as manifested
by the fact that capacity estimates were not stable across set-sizes, but rather lower for the larger set-size.
Another support for this notion came from the tight connection capacity estimates had with a measure of at-
tentional control. Together, the data suggested that individual differences in capacity do not reflect only dif-
ferences in storage-size, but differences in the efficiency of using this storage. Second, we found a response bias
such that subjects are more likely to respond that the probed item changed, and this criterion bias was further
shifted as the set-size increased. These findings are naturally explained by a slot-like theory arguing that when
load exceeds capacity, certain items remain completely outside of VWM (instead of all items being represented in
lower resolution), therefore causing subjects to perceive them as different from VWM contents even when they
are unchanged. Additionally, we found that the pattern of d' also confirmed the predictions of a slot-like view of
VWM, such that some items are represented with high fixed resolution and others are not represented at all,
although this finding is based on two measures with very different underlying assumptions. We also discuss how
flexible-resource views can accommodate these results. Moreover, comparing performance between the first and
last trials demonstrated no evidence for proactive interference as the driving factor of capacity limitations. We
provide further details regarding the distribution of individual capacity, the relations between capacity and
demographic variables, and the spatial prioritization of the items.

1. Introduction

Visual working memory (VWM) holds relevant visual information in
an active state, ready to be accessed and manipulated by higher cog-
nitive functions (Cowan, 2001). However, only a very limited amount
of information can be retained in this privileged state, creating a bot-
tleneck for how we process incoming information. Corroborating the
importance of VWM in everyday behavior, it is specifically damaged in
a range of conditions such as Alzheimer’s disease, attention deficit
hyperactivity disorder (ADHD), old age, and schizophrenia (e.g.,
Johnson et al., 2013; Jost, Bryck, Vogel, & Mayr, 2011; Martinussen,
Hayden, Hogg-Johnson, & Tannock, 2005; Parra et al., 2011). The
nature of VWM capacity is heavily debated (e.g., whether it is better
described as a continuous or discrete resource, cf. Brady, Konkle, &
Alvarez, 2011; Luck & Vogel, 2013; Ma, Husain, & Bays, 2014), but the

existence of a severe limitation on this capacity is vastly acceptable and
can be considered as one of the defining characteristics of VWM.

Despite average capacity limits being quite low (∼3 simple items’
worth of information), a great deal of variability exists between in-
dividuals. Capacity is highly stable at the individual level (e.g., across
set-sizes or blocks, Cronbach’s alphas> 0.9; Xu, Adam, Fang, & Vogel,
2018), and is tightly correlated with measures of fluid intelligence,
attentional control, and many aptitude measures (e.g., Cowan et al.,
2005; Fukuda, Vogel, Mayr, & Awh, 2010; Vogel, McCollough, &
Machizawa, 2005). Understanding the nature of these capacity differ-
ences and further exploring how VWM is related to other important
cognitive constructs is the focus of numerous ongoing research projects.

A prominent method for quantifying VWM performance is the
change detection paradigm (Luck & Vogel, 1997; Pashler, 1988;
Phillips, 1974). In the canonical form of the task, several simple items
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are briefly presented, and after a short retention interval the test array
appears, with an item in one of the previously-occupied locations. The
subjects' task is to indicate whether the probed item, i.e., the item in the
test array, is the same or different (typically with an equal probability)
from the item appearing in the same place in the memory array. Per-
formance is usually transformed into a capacity estimate (K), i.e., the
number of items that can be successfully retained in VWM (Cowan,
2001; Pashler, 1988). Even a∼10min long version of this task is highly
reliable, with capacity measures being stable between testing sessions
more than a year apart (r= 0.77; Johnson et al., 2013). This makes the
paradigm ideal for examining individual differences in capacity.

In the present study, we report the results of over 3,800 subjects that
completed a short change detection task in our lab, before participating
in one of many different experiments. Usually, each experiment (even
when sample-size is adequate to examine individual differences) pro-
vides a small number of trials overall. Pooling together trials from an
extremely large number of subjects, for a total of over 460,000 trials of
the same task, allowed us to analyze the data in ways that are beyond
the scope of ordinary studies. Our main goal was to shed new light on
VWM capacity limitations. Additionally, the large sample size allowed
us to better characterize the change detection task, in terms of perfor-
mance biases, both at the individual and at the “population” level.

An important advantage of the canonical change detection para-
digm is that task performance is only minimally influenced by processes
external to VWM, such as verbal working memory, iconic memory,
long-term memory, and response-related processes (Cowan, 2001). This
had made change detection performance almost synonym to VWM ca-
pacity. However, it is important to remember that the change detection
task is not a cognitive process per se, but a paradigm, and the ability of
this paradigm to adequately measure VWM processes depends on many
carefully-thought parameters of the experimental setup (Vogel,
Woodman, & Luck, 2001). Specifically, isolating VWM processes re-
quires using short presentation times or adding articulatory suppression
to prevent verbal coding (Luck & Vogel, 1997; Vogel et al., 2001), in-
cluding masking or a long-enough (∼1 s) retention interval to delete
the retinal after-image (Phillips, 1974), and using simple and highly
discriminable items to minimize comparison-process errors that arise
for complex stimuli (Awh, Barton, & Vogel, 2007). Adhering to these
conventions allow strong conclusions about VWM to be drawn directly
from change detection performance.

2. Materials and methods

All analyzed data-sets can be found at the Open Science Framework:
http://dx.doi.org/10.17605/OSF.IO/MZS9E.

2.1. Participants

Subjects were mostly Tel Aviv University students and several in-
dividuals from the Tel Aviv University community, who completed the
task before taking part in a longer experiment (a small subset of the K
estimates data was previously published in Allon & Luria, 2017; Allon,
Vixman, & Luria, 2018; Vaskevich & Luria, 2018). Subjects participated
for either payment (approximately 40 NIS, or $10, per hour), partial
course credit, or voluntarily without compensation. All had normal or
corrected-to-normal visual acuity and normal color vision. All partici-
pants gave informed consent following the procedures of protocols
approved by the Ethics Committee at Tel Aviv University. Age ranged
between 18 and 39.

A total of 3,923 data-sets were collected for the following analyses.
Some participants took part in more than one experiment at the lab, and
thus contributed more than one data-set to the current analysis (ap-
proximately 1,000 data sets came from such repeated participants). We
excluded data-sets with below-chance performance at set-size 4 or a K
estimate of less than 0 (46 data-sets, 1.2%), because this results from
below-chance performance which likely reflects switching the response

keys (i.e., pressing the “same” key for a “different” response and vice
versa). Additionally, due to an error in the code, some participants
completed more than 120 trials. We included data-sets with 121–130
trials (54 data-sets, 1.4%), and excluded data-sets with over 130 trials
(28 data-sets, 0.7%). This left a total of 3,849 analyzed data-sets with
462,186 trials.

2.2. Stimuli and procedure

Subjects performed a ∼10min color change detection task (see
Fig. 1). A memory array of colored squares (approximately 1.3°× 1.3°
of visual angle, from a viewing distance of approximately 60 cm) ap-
peared for 150ms around a black fixation cross (0.4°× 0.4°) at the
center of a grey (RGB values: 125,125,125) screen. Items were ran-
domly selected, without replacement, from a set of 9 highly dis-
criminable colors: red, magenta, blue, cyan, green, yellow, orange,
brown, and black (RGB values, respectively: 254,0,0; 255,0,254;
0,0,254; 0,255,255; 0,255,1; 255,255,0; 255,128,65; 128,64,0; 0,0,0;
note that the colors would render differently depending on the video
card and monitor). Participants were instructed to memorize the
squares’ colors. The squares disappeared for a 900ms retention interval
(leaving only the fixation cross), and then the probe appeared: a single
square in one of the previously occupied locations (randomly de-
termined). Participants’ task was to indicate in a non-speeded manner,
via button press, whether the probe was the same color as the square in
that location, or a different color (using the “Z” and “/” keys on a
standard keyboard, respectively; a subset of the subjects did a coun-
terbalanced version, see the Results section).

Half of the trials included 4 colors in the memory array, and the
other half included 8 colors (randomly intermixed). Half of the trials
included a change, and half did not (randomly intermixed). After about
6 practice trials, participants completed one block of 120 experimental
trials, with 30 trials for each combination of set-size (4 or 8) and trial
type (change or no-change).

On each trial, one quarter of the items (1 in set-size 4 trials and 2 in
set-size 8 trials) were presented on each quadrant. Items’ locations were
selected randomly from 9 possible locations in each quadrant: 2.7°,
5.3°, or 8° vertically from the center of the screen, and 2.7°, 5.3°, or 8°
horizontally from the center of the screen (e.g., in the top left quadrant,
items could appear centered at 2.7°, 5.3°, or 8° to the left of the fixation,
and 2.7°, 5.3°, or 8° above the fixation).

2.3. Individual-level analyses

We extracted from each data-set a measure of K, using a standard
formula (Cowan, 2001; Pashler, 1988): K=N× (H− FA), where K is
the capacity estimate, N is the set-size, H is hit rate, and FA is the false
alarm rate (meaning the individual proportion of correct responses in
change trials, and of incorrect responses in no-change trials, respec-
tively). In the present situation, of a single-probe task with a 50%

Fig. 1. Trial sequence in the change detection task employed in the present
study. A memory array of colored squares appeared for a short duration, fol-
lowed by a blank retention interval, and then a test array with only one probe
that can be either the same as the item in the same location in the memory
array, or different. This is an example of a set-size 4 trial, including a change.
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probability of change, an equivalent formula is K=N× (2×Accu-
racy− 1), where Accuracy is the proportion correct across all trials of
that set-size (regardless of whether there was or wasn’t a change).
Following standard practice, we averaged K across the two set-sizes.

Additionally, we calculated the signal detection theory measures of
d', which in the present context is an index of memory signal strength,
and criterion, following standard practices for these kinds of “yes/no”
tasks (Macmillan & Creelman, 2004). Note that in the change detection
paradigm, since the task is to indicate whether a change occurred, a
“yes” response corresponds to a changed or new item, unlike in classical
“old/new” recognition task in which a “yes” response corresponds to a
previously-shown item (e.g., Keshvari, van den Berg, & Ma, 2013).
Memory signal strength, i.e., d', was calculated as: d′ = Z(H) − Z(FA),
where Z(H) is the Z-score of the hit rate, and Z(FA) is the Z-score of the
false alarm rate. Criterion, or bias, was calculated as C=−0.5× (Z
(H)+ Z(FA)), where C is the criterion, and Z(H) and Z(FA) are as in the
d′ calculation.

2.4. Group-level analyses

To examine several fine-grained characteristics of the change de-
tection task, we pooled together all data-sets, for a total of 462,186
trials. We then performed two analyses on the aggregate set of trials.
First, we computed K separately for each serial position of the trial
within the experiment (1–120; 3,849 trials per serial position number).
This means we treated all trials from a single position as if they came
from a single subject that performed 3,849 trials and then extracted K in
the usual way. Second, we computed accuracy separately for each of the
36 probed locations (12,625–13,039 trials per location). For this ana-
lysis, we also report a subset of 905 participants who did a counter-
balanced version of the task in terms of the response keys mapping, in
which we break down trials also by the type of trial (change vs. no-
change).

2.5. Statistical analyses

Due to the very large sample-size in most of our analyses, traditional
statistical tests are not informative, because they’re likely to be sig-
nificant even for trivial effects. For the same reason, traditional con-
fidence intervals (CIs) will be extremely narrow and hence not in-
dicative. Instead, for our main analyses we relied on the large sample-
size and treated the data-sets as a population. We report the observed
2.5 and 97.5 percentiles, i.e., the values that mark the range holding the
central 95% of the “population” distribution. We refer to these observed
percentiles as the population 95% range. We additionally report 95%
Bayesian credibility intervals, calculated using the JASP software (with
default priors). We report traditional 95% CIs for correlations measures,
because for these measures a single value is computed for all subjects.
To test whether the data is normally distributed, we performed
D’Agostino’s K2 test (D’agostino, Belanger, & D’agostino, 1990), based
on skewness and kurtosis, which is suitable for our large sample-size.

3. Results

3.1. Individual VWM capacity estimates

For each individual data-set, we calculated a measure of K, ac-
cording to the above-mentioned formula. Average K was 2.66, with a
standard deviation of 0.83. Table 1 summarizes descriptive statistics for
all “population-level” reported measures.

This replicates two of the key characteristics regarding VWM ca-
pacity. First, the highly limited nature of this workspace (less than 3
simple items) is very similar to previous reports, including the findings
of a recent large-scale study conducted in the US (average K: 2.55,
N=495; Fukuda, Woodman, & Vogel, 2015), though somewhat higher
than the findings of one conducted in China (average K: 2.14, N=135;

Xu et al., 2018). Second, we found large individual differences, as
manifested by the 0.8 items standard deviation. Fig. 2 depicts the dis-
tribution of K values across participants.

As can be seen in Fig. 2, the observed K values appear to follow a
normal distribution. To qualitatively estimate this, we present a Q-Q
plot in Fig. 3. This plot compares our observed quantiles to the theo-
retical quantiles expected from a normal distribution. The more similar
the two compared distributions, the closer the individual data points
will be to a straight line. As can be seen from the figure, the observed
data indeed closely matches the expected quantiles, suggesting that the
data is normally distributed. To quantitively support this observation,
we performed the D’Agostino K2 test, which suggested that the dis-
tribution is not significantly different from a normal distribution
(K2=1.23, p=0.54). It is noteworthy that the results of an extremely
simple 10-min color memory task are normally distributed.

It might be argued that this normality does not reflect the shape of
the K construct itself, but rather the normality of the measurement error
in this task, resulting from a sum of binary choices. However, K esti-
mates for set-size 8 separately was not normally distributed
(K2=31.08, p < 0.001; we tested this for set-size 8 because although
K at set-size 4 was also not normally distributed, it has a relatively low
upper bound), despite also involving similar measurement errors. In
fact, K estimates for 8 items were positively skewed, and K estimates for
4 items were negatively skewed, which suggests a different alternative
explanation for the normality of average K estimates: the normal dis-
tribution might be an averaging artifact. To rule this out, we averaged
for each individual data-set two other oppositely-skewed measures,
namely d' which was positively skewed and criterion which was nega-
tively skewed (we used the measures from trials of both set-sizes
combined). We found that the average measure was not normally dis-
tributed (K2=26.91, p < 0.001), meaning that not every two oppo-
sitely-skewed measures will create a normal distribution when aver-
aged together. Finally, it might be argued that it is the variance in
individual estimates of K that follows a normal distribution (i.e., mea-
suring each participant numerous times would have produced a normal
distribution of K estimates for that individual), thus producing a normal
distribution across participants. If this is the case, however, it should
also hold for other measures. We tested this for d' and criterion, and
found that they were not normally distributed, either when considering
each set-sizes separately or when aggregating both set-sizes (all
K2s > 18, all p’s < 0.001). Thus, the normal distribution of K esti-
mates is an important finding, which we suggest reflects the underlying
normal distribution of VWM capacity in the population, demonstrating
that K is a meaningful construct.

Next, we examined K estimates at the different set-sizes. Capacity
estimates at set-size 4 trials were higher than in set-size 8 trials (mean
K: 2.79 vs. 2.54, respectively), and varied less (SD: 0.66 vs. 1.21, re-
spectively). Since both set-sizes are beyond the average capacity limit
(i.e., most participants cannot hold even 4 simple items in VWM), the
fact that the larger set-size produces a lower capacity estimates is in-
teresting. A view of VWM as a passive storage would lead to a predic-
tion that capacity should be stable across set-size (e.g., if one can only
hold 2 items, they should always hold 2 items, regardless of the pre-
sented set-size). This is not the case, however, and increasing the set-
size further decreases performance, which strongly indicates that VWM
is a dynamic process. Thus, capacity estimates do not solely reflect the
size of the storage, but also the ability to use it well under different
circumstances, for example varying memory loads.

If that is the case, we should expect that average capacity estimates
mainly reflect the larger set-size, which poses a greater difficulty. To
test this, we examined the correlations between K estimates at each set-
size separately, and overall K. K estimates at set-size 4 and 8 had a
correlation of r= 0.53 (95% CI: [0.51, 0.56]), meaning they shared
28% of their variance. The correlation between overall K and set-size
4 K was r= 0.79 (95% CI: [0.77, 0.80]), while the correlation between
overall K and set-size 8 K was r= 0.94 (95% CI: [0.94, 0.95]), see
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Fig. 4. Thus, the overall capacity estimate shared 62% of its variance
with the set-size 4 estimate, and as much as 89% of its variance with the
set-size 8 estimate. This tight relationship suggests that K mainly re-
flects the highest set-size (notably, because the variance is larger at set-
size 8, its correlations are expected to be higher, but here it completely
dominates the explained variance). This might lead one to argue that it
could be enough to measure only set-size 8, because of its high corre-
lation with overall K. Nevertheless, we argue that including only arrays
that are far beyond average capacity is problematic, because their ex-
treme difficulty might seriously damage subjects’ motivation. We do
note, however, that it is vital to include these set-sizes to properly es-
timate capacity.

The idea of VWM capacity as reflecting an active storage ability,
instead of storage size, could explain why VWM capacity is correlated
with the ability to filter out irrelevant distractors (Vogel et al., 2005): in
tasks involving only relevant items, when the set-size exceeds the in-
dividual capacity limit, over-capacity targets are just like distractors.
This means that set-size 8 is more difficult than set-size 4 partially
because of the need to select a subset of items among more possibilities.
For this reason, the difference between K at set-sizes 4 and 8 (termed
“4–8 drop”) was previously used as a measure of attentional control,
argued to be conceptually separated from the size of VWM-storage
(Unsworth, Fukuda, Awh, & Vogel, 2014, 2015). We found that the 4–8
drop was on average greater than zero (mean: 0.25), with substantial
variance (SD: 1.03). While the 4–8 drop did not correlate with set-size
4 K (r= 0.01, 95% CI: [−0.02, 0.04]), it strongly correlated with set-
size 8 K (r=−0.84, 95% CI: [−0.85, −0.83]) and with overall K
(r=−0.61, 95% CI: [−0.63, −0.59]), such that high-capacity in-
dividuals had a smaller 4–8 drop, i.e., less of a difference between the
two set-sizes (see Fig. 5). Because the 4–8 drop shares 37% of its var-
iance with overall K and 71% of its variance with set-size 8 K, we argue
that the 4–8 drop does not reflect an ability independent from capacity.
Instead, both the 4–8 drop and classical capacity estimates seem to
reflect, at least to some degree, the ability to flexibly use limited VWM
resources. Another interesting possibility along this line is that the 4–8
drop reflects some sort of a strategy shift, which high-capacity in-
dividuals should be more likely to successfully utilize (as suggested by
the correlations between VWM capacity and fluid intelligence, e.g.,
Fukuda et al., 2010). This also goes with a view of capacity as the ef-
ficient use of VWM.

Notably, the correlations were calculated between different mea-
sures derived from the same task, using the same small set of trials. This
means that random factors that drive performance (e.g., attentional
fluctuations or guesses) might affect several different measures in a

Table 1
Descriptive statistics for the different measures: mean (standard deviation in parentheses), population 95% range (2.5 and 97.5 percentiles, see Methods), and lower
and higher boundaries of the 95% Bayesian credibility interval (CI).

Measure Mean (SD) Population 95% range 95% Bayesian CI

2.5 percentile 97.5 percentile Lower boundary Higher boundary

K (averaged across set-sizes) 2.66 (0.83) 1.07 4.27 2.64 2.69
K: set-size 4 2.79 (0.66) 1.33 3.87 2.77 2.81
K: set-size 8 2.54 (1.21) 0.27 5.07 2.50 2.58
4–8 drop 0.25 (1.03) −1.87 2.13 0.21 0.28
Hit rate 0.90 (0.08) 0.70 1.00 0.89 0.90
Correct rejection 0.61 (0.13) 0.33 0.85 0.61 0.62
Hit rate: set-size 4 0.93 (0.07) 0.77 1.00 0.93 0.93
Correct rejection: set-size 4 0.77 (0.14) 0.43 1.00 0.76 0.77
Hit rate: set-size 8 0.86 (0.11) 0.60 1.00 0.86 0.87
Correct rejection: set-size 8 0.46 (0.16) 0.17 0.77 0.45 0.46
Criterion: set-size 4 −0.41 (0.36) −1.11 −0.28 −0.42 −0.40
Criterion: set-size 8 −0.69 (0.44) −1.56 0.10 −0.71 −0.68
d': set-size 4 2.48 1.03 4.23 2.45 2.50
d': set-size 8 1.14 0.11 2.34 1.13 1.16
K: females 2.75 (0.81) 1.23 4.33 2.71 2.79
K: males 2.64 (0.82) 1.07 4.27 2.58 2.70

Fig. 2. A histogram of K (capacity estimate) values for our 3,849 individual
data-sets (density on the Y axis). The dashed black line depicts a normal dis-
tribution with the same mean (μ) and standard deviation (σ) as our observed
distribution, and these values are also presented on the histogram.

Fig. 3. A Q-Q plot of K values. Observed quantiles appear on the Y axis, and
theoretical quantiles, derived from a normal distribution, appear on the X axis.
The diagonal line depicts the standardized x= y line (i.e., the line on which the
percentiles exactly match). The fewer deviations from the line, the more nor-
mally distributed the data is.
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similar way, thus inflating the observed correlations. To test this, we
divided each data-set into two parts, each constructed of only odd- or
even-numbered trials. We then calculated the correlations between the
different measures from these mutually-exclusive subsets of trials, and
averaged across the two correlations (e.g., the correlation between K at
set-size 4 and averaged K was calculated as the average of the corre-
lation between K at set-size 4 in odd trials and average K in even trials,
and the correlation between K at size 4 in even trials and average K in
odd trials). Since this results in a very small number of trials con-
tributing to each measure, we used the Spearman-Brown correction
(Brown, 1910; Spearman, 1910) to estimate the correlations for double
the number of trials.

In line with the hypothesis that the strong correlations stem at least
partially from the reliance on the same trials, when different trials were
used to calculate each measure, the pattern of correlations was different
from what we originally observed. We found correlations of r= 0.41
between K at set-size 4 and K at set-size 8, r= 0.54 between K at set-
size 4 and overall K, and r= 0.58 between K at set-size 8 and overall K,
lower than the correlations from all trials together. Thus, set-size 8 no
longer dominated the overall K estimates. The correlation between the
4–8 drop and K at set-size 4 remained around zero (r= -0.01), and the
correlations between the 4–8 drop and K at set-size 8 or overall K were
lower than those based on all trials: r=−0.37 for K at set-size 8, and
r=−0.28 for overall K. Critically, however, these results are difficult
to interpret, because the reliability of our measures was quite low, even
after the Spearman-Brown Correction was applied (r= 0.25 for the 4–8
drop, r= 0.51 for K at set-size 4, r= 0.53 for K at set-size 8, and
r= 0.64 for overall K). This is expected based on previous reports that
using a small number of trials will lead to a low reliability for K esti-
mates, whether overall or by set-size, even using the Spearman-Brown
correction (Xu et al., 2018), a finding which remains stable regardless
of the number of participants.

Thus, our analysis raised the possibilities that capacity estimates
mostly reflect the larger set-size, and that the 4–8 drop is not in-
dependent from the overall capacity estimates and from set-size 8, but
more research is needed for a stronger conclusion to be drawn. If more
direct evidence will support our observations, it will be in line with a
view of capacity that diverges from its interpretation as simply the size
of VWM-storage. Instead, as is suggested by our finding that capacity
estimates are lower in the larger set-size (despite both set-sizes being
above average capacity), we argue that capacity should be regarded as
the ability to efficiently use VWM (Mance & Vogel, 2013). In this view,
individual differences in capacity do not solely manifest a different
storage-size, but instead largely reflect the differential capability to
flexibly and adaptably use a similarly-limited storage.

We next turned to compare trials that included a change in the
probed color to trials in which the color was the same as in the memory
array. Accuracy in change trials (i.e., hit rate) was much higher than in
no-change trials (i.e., correct rejection): 0.90 compared with only 0.61.
This pattern was observed both for set-size 4 (0.93 vs. 0.77, respec-
tively) and for set-size 8 (0.86 vs. 0.46, respectively). This suggests a
shift of criterion, and indeed we found that the criterion was −0.41 for
set-size 4 trials, and −0.69 for set-size 8 trials. This indicates that
subjects had a bias to respond “different”, and this tendency was more
evident in the larger set-size.

The shift in criterion is an interesting finding, which can be natu-
rally accounted for in a slot-like view of VWM (Zhang & Luck, 2008),
which posits that only a handful of items are represented with high
resolution, and other items simply remain outside of VWM (it is also
possible that these items are represented with extremely low resolution,
as was previously suggested (van den Berg, Shin, Chou, George, & Ma,
2012), but for conciseness we focus on the simpler zero-resolution
framework and return to the more elaborated alternative in the Dis-
cussion). If some items are not represented, they should be perceived as

Fig. 4. The correlations between capacity estimates (K) from (a) set-sizes 4 and 8, r= 0.53; (b) set-size 4 and the average of both set-sizes, r= 0.79; (c) set-size 8 and
the average of both set-sizes, r= 0.94. To better illustrate the distribution, the dots are semi-transparent, hence the darkness of an area shows the frequency of this
combination of values.
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different from the current contents of VWM even when they are un-
changed, resulting in a greater tendency to respond “different”, i.e.,
causing a shift of criterion in the observed direction. The slot-view in-
terpretation of our observed average K is that subjects only hold an
average of 2–3 items of the 4 or 8 presented colors, while all other items
are completely unrepresented. Therefore, when the test array happens
to present one of the unrepresented items in its original (i.e., un-
changed) color, subjective experience should be that this item is dif-
ferent from those held in memory, leading to more “different” responses
than there should be, i.e., the observed response bias. A slot view also
predicts that the bias should be larger when more items are presented,
because there are more un-stored items that subjectively resemble new
items once presented in the test array.

The alternative view of VWM is of a flexible resource, such that all
items enter VWM, and as more items are maintained, the resolution of
the representations deteriorates (Bays & Husain, 2008). The greater
representational noise that is associated with an increased set-size in
this account can result in several possibilities with regards to the re-
sponse bias. While accuracy should decrease as set-size increases, the
predictions for the criterion are less clear. As set-size increases the re-
presentations become noisier, which might lead participants to perceive
unchanged items as different from those in memory, shifting the cri-
terion in the observed direction. However, noisier representations
might necessitate stronger evidence to report a change, exactly because
the presented color is always different from the perceived one, shifting
the criterion in a positive direction, the opposite from what was ob-
served here. Thus, a continuous-resource account of VWM does not
necessarily predict any criterion shift, but it can accommodate it. The
observed direction of the criterion shift suggests that the factors that
cause a negative criterion shift are stronger than those causing a posi-
tive criterion shift, an interesting direction that can be empirically
tested in future studies.

Finally, another possibility is that the observed shift of the criterion
is the result of factors external to the VWM capacity debate, such as
attentional load or task difficulty. For example, subjects might utilize a
different strategy in the larger set-size, causing them to shift the cri-
terion. However, this notion does not explain why the criterion was
shifted to begin with (in set-size 4), or why the shift when the set-size
increased was in the observed direction. Therefore, more work, perhaps
involving formal model comparison, is needed to better understand the
origin of the observed pattern of results. We conclude that the shifted
criterion is predicted by a discrete-slot view of VWM but does not rule
out a flexible-resource view of VWM and might also be the result of
factors orthogonal to the structure of VWM.

To complement this signal detection analysis, we also report d', i.e.,
memory signal strength: d′ was 2.48 for set-size 4, and 1.14 for set-size
8, which is lower as expected. Notably, the exact amount of decrease in
d′ from set-size 4 to set-size 8 might shed light on the source of this
decrease. Specifically, according to a simple version of the flexible-re-
source view of VWM, all of the presented items are maintained in VWM,
because capacity is distributed across all items. Consequently, as set-
size increases, the resolution of each representation should decrease. In
other words, capacity remains constant, and is divided across all N
items. Therefore, on average d′ at set-size 8 should be half of d′ at set-
size 4, because there are twice as many items that share the same
overall capacity. Here, we found that d′ at set-size 4 was 2.48, meaning
that according to the flexible resource view d′ at set-size 8 should be
1.24, which is quite close to the observed d′ of 1.14. In fact, for each
participant d′ at set-size 8 should be half of d′ at set-size 4, and we can
test the correlation between the actual d′ at set-size 8 and the d′ pre-
dicted based on d′ at set-size 4 (note that the predicted d′ at set-size 8 is
a simple linear transformation of d′ at set-size 4), which we found to be
r= 0.47 (95% CI: [0.44, 0.49]). Finding this correlation suggests that a
simple version of the flexible-resource model gives a good prediction of

Fig. 5. The correlations between the 4–8 drop (the difference in K between set-size 4 and set-size 8; Y axis) and the three K measures (X axis): (a) K averaged across
both set-sizes, r=−0.61; (b) K at set-size 4 trials, r= 0.01, (c) K at set-size 8 trials, r=−0.84. To better illustrate the distribution, the dots are semi-transparent,
hence the darkness of an area shows the frequency of this combination of values.
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the decrease in d′. Versions of the flexible-resource model that in-
corporate other factors, such as a variable resolution, could probably
produce better predictions, and in fact, in the present setting (with only
two set-sizes and no additional manipulations), some sort of a flexible-
resource view could have predicted any amount of a decrease in d'.

Interestingly, the alternative view, of VWM as a slot-like storage,
makes very strong predictions regarding the exact level of d′ across set-
sizes as well. According to this view, at each set-size some of the items
are fully represented (i.e., with a very high resolution), and the rest of
the items remain completely outside of VWM. This means that the
observed d' at each set-size is a mixture of two d' measures: one for the
fully-remembered items, and a d' of 0 for the items that were not re-
presented. Furthermore, the slot model assumes that the d′ for the re-
presented items should be identical between set-size 4 and set-size 8,
due to the all-or-none nature of the slots.

To test this prediction, we can extract the individual d' for fully
remembered items from the observed d' at set-size 4: the observed d'
(2.48) times 4, divided by K at set-size 4, which gives d'= 3.56. This
means that according to the slot model, the observed d′ at set-size 4
(2.48) is an average of the 2.79 items that were represented in VWM
with a d′ of 3.56 and 1.21 items with d′ of 0. Because the slot model
assumes that the individual-item d′ for the represented items should be
identical in set-size 8, we can calculate the predicted average d' at set-
size 8, because the slot model predicts that this d′ is an average of K
items with d′=3.56 and 8-K items with d′=0. Thus, according to the
slow model, the average d′ should be 3.56 times 2.54 (K at set-size 8),
divided by 8. This gives a predicted d' at set-size 8 of 1.13, which is
remarkably close to the observed d' at set-size 8, which was 1.14. This
suggests that on average, the pattern of d′ across set-sizes is very well
predicted by the slot model, which assumes all-or-none fixed re-
presentations.

While these results strongly support the slot model at the average
level, if indeed a slot-like view of VWM can account for the pattern of d′
across set-sizes, this should be true also at the individual level. Thus, an
even stronger test for the predictions of the slot model would be ap-
plying the same calculation for each data set separately and examining
how well the predicted d′ correlates with the observed d′. Corroborating
and extending the group-level finding, we found a very strong corre-
lation of r= 0.83 (95% CI: [0.82, 0.84]) between the d' at set-size 8 that
was actually observed and the d' predicted by the slot model. Notably,
this correlation is not merely a byproduct of a tight relationship be-
tween the observed d' at set-size 4 (which was used to calculate the
predicted d' at set-size 8) and the observed d' at set-size 8, because their
correlation was much lower, r= 0.47 (95% CI: [0.44, 0.49]), as was

found for the simple flexible-resource prediction of d′.
Thus, we found that the pattern of d′, a signal detection theory

measure of memory strength, was well accounted for in a resource-like
view of VWM, but it followed even more closely the predictions of a
slot-like VWM which holds a limited set of items in high resolution,
while other presented items remain outside of the storage. Moreover, it
supports the slot model’s assumption that the same memory strength is
used for each represented item, regardless of the set-size. Indeed, the
average d′ across set-sizes followed what is expected from the capacity
estimates of K, and this was true even at the individual level. These
somewhat surprising findings give novel support for the notion of a
discrete, instead of resource-like, capacity limit of VWM. However, it is
important to note that this analysis relies on mixing K and d′, two
measures that have very different underlying assumptions (high-
threshold versus signal detection). Indeed, the slot model assumes that
some items will produce maximal d′ and others will have d′=0, which
is different from the usual analysis of d′. Moreover, the current slot-
model predictions of d’ at set-size 8 were based on K at set-size 8, which
involve the same trials. If instead we use K at set-size 4 to predict d’ at
set-size 8, we go back to a correlation of r= 0.47 (95% CI: [0.44, 0.49],
exactly as strong as using d’ at set-size 4 to predict d’ at set-size 8. It is
noteworthy that measures that are not based on the high-threshold
assumptions of K, namely d′ and criterion, follow closely the predictions
of the slot model, but more work is needed to clarify this point, and
using formal model comparison could allow a future definite conclu-
sion.

Finally, we found a correlation of r=−0.31 (95% CI: [−0.34,
−0.29] between overall response bias and d′ (across the different set-
sizes).

3.2. Group-level capacity estimates

We next turned to examine the dynamics of capacity throughout the
span of the experiment. Comparing K values from the different serial
positions of the trials (1–120) can uncover the influence of either
practice or proactive interference on capacity estimates: practice should
manifest in larger K values as the experiment progresses, while proac-
tive interference will produce smaller K values in later trials. Notably,
the ability to overcome proactive interference has been argued to un-
derly at least some part of individual differences in VWM capacity, e.g.,
because of the need to suppress previously active items (Hartshorne,
2008; Unsworth & Engle, 2007). K estimates for each of the serial po-
sitions in the task are presented in Fig. 6.

Contrary to the interpretation of capacity as stemming from

Fig. 6. K estimates, for all 3,849 data-sets pooled together, by serial position within the task. Green dots are the 3 highest K trials, with the green line showing their
average. Pink dots are the 3 lowest K trials, with the pink line showing their average. The dashed grey line shows the linear relationship between K and serial
position. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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proactive interference, we found that K estimates were extremely stable
throughout the experiment, with an SD of only 0.10 between the dif-
ferent serial positions. As can be seen from Fig. 6, the highest K trials
and lowest K trials were relatively distributed across the entire ex-
periment, and the difference between them was not very large (mean of
the 3 best serial positions: 2.89, worst: 2.47). Additionally, we found
that K on the first trial of the task, where proactive interference is
minimal, was already quite low (2.63), and was even slightly lower
than K on the last trial, where proactive interference is maximal (2.74).
To quantify the contribution of proactive interference to capacity, we
calculated the Spearman correlation between serial position and K,
which was negative but relatively weak, r=−0.23 (95% CI: [−0.39,
−0.05]). This suggests that while some proactive interference might
occur, it accounts for only 5% of the variance in capacity, in line with
previous claims that it is fairly negligible in the canonical change de-
tection task (Lin & Luck, 2012).

We found no clear evidence of improvement beyond the first ∼5
trials, suggesting that after some minimal practice took place, capacity
is very stable. This improvement is likely due to a slightly smaller bias
(criterion was −0.55 in the first trial, and −0.54 in the fifth trial), and
after this adjustment of criterion participants did not continue to im-
prove, suggesting practice does not play a large role in capacity esti-
mate in this short task.

As mentioned above, since VWM capacity is limited, a key question
is what happens in the face of many to-be-encoded items. A simple
flexible resource model should predict that capacity is evenly dis-
tributed between all items, because they are equally important and all
of them can enter VWM (though in lower resolution, Bays & Husain,
2008). Contrary to this view, most present theories of VWM posit that
when facing supra-capacity arrays, participants must prioritize some
items at the expense of others. The unprioritized items either won’t
enter VWM at all (Zhang & Luck, 2008), or will enter VWM in lower
resolution (van den Berg et al., 2012). Our data-set allowed us to ex-
amine whether there is systematic prioritization based on items’ loca-
tions, reflected in systematic differences in accuracy between the
probed locations. As can be seen from Fig. 7, accuracy is not uniformly
distributed across space, and instead a handful locations are privileged.
The two top-central locations produce the best accuracy, and the lo-
cations around them follow. The top part of the screen is preferred to
the bottom part, while there is no systematic difference between the left
and right sides of the screen. The source of the advantage for the two
top-central locations could be attributed to different stages involved in
the change detection task: privileged attention during encoding or less
encoding noise, more stable maintenance, or easier retrieval.

A subset of participants performed a counterbalanced version of the

task. Applying the spatial analysis to this subset allowed us to disen-
tangle the previously discussed bias for “different” responses from the
effect of response side, because in the regular version of our task “dif-
ferent” was associated with the right-hand side. For 905 counter-
balanced data-sets, accuracy by the type of trial (change vs. no-change)
and the response-mapping (“different” on the right vs. left) is shown in
Fig. 8 (note that this analysis is much noisier than the previous one,
including only about 6% of the amount of data). The results, presented
in Fig. 8, suggest no clear effect of response-mapping, and importantly,
both groups have a much higher hit rate than a correct rejection rate.
This suggests that the response bias doesn’t stem from a right-hand
preference, and instead reflects a genuine shift of criterion, in line with
an item-limit on VWM (see above).

3.3. Large-scale analysis of capacity

Our final set of analyses examined the relationship between K es-
timates and several factors, as a characterization of the “population-
level” parameters of VWM capacity. We first examined capacity by the
hour of day and month of year in which the experiment took place, and
then by demographic parameters: gender, age, and field of study (since
the data was not collected for the current analysis but for a range of
different experiments conducted through the course of several years,
the number of data-sets for which a specific measure was available
differed between the reported factors).

Our data was collected throughout the year, enabling us to examine
whether capacity is, for example, higher at the beginning of a semester
(November and March for the winter and spring semester, respectively)
than at the end of a semester (January and June), during the exams
period (February and July-August), or during summer break
(September-October). Similarly, we could examine whether capacity
drops or rises throughout the day. As can be seen in Fig. 9, K estimates
were quite stable across the year, and throughout the day, although
some variation exists. The highest K month was January (the end of
winter semester; mean: 2.75, SD: 0.87), and the lowest K month was
June (the end of spring semester; mean: 2.51; SD: 0.85), but the range
was very narrow, and the different months, both during the school year
and during vacations, produced highly similar capacity estimates (SD of
the different months: 0.07). As for the time of day (for this analysis we
focused on 8am-5 pm, because earlier and later hours had less than 30
data-sets; this resulted in a total of 3,813 data-sets for this analysis), we
found that K was slightly higher in the morning than in the afternoon,
although it had a relatively restricted range. The highest K hour was 9
am (mean: 2.76, SD: 0.82) and the lowest K hour was 5 pm (mean: 2.47,
SD: 0.81), with a very small range (SD of the different hours: 0.07).

As another way to characterize VWM capacity, we examined the
relationship between capacity and demographic factors, starting with
gender (N=2,079, 1,456 females, 623 males). We found that females’
VWM capacity was slightly higher than that of males (females’ mean:
2.75, SD: 0.81; males’mean: 2.64, SD: 0.82; BF10= 2.79). To the best of
our knowledge, this interesting, though delicate, finding has not been
previously reported.

Next, we examined the correlation between capacity and age
(N=1,833), because it has been shown that VWM deteriorates in old
age (e.g., Jost et al., 2011). However, in our data-set of healthy young
adults, with a restricted range of ages (18–39, mean 23.75), we found
absolutely no relationship between capacity and age (r= 0.01, 95% CI:
[−0.03, 0.06]). This shows another aspect of stability in capacity es-
timates using the canonical change detection task.

Finally, we examined the distribution of capacity across the dif-
ferent fields of study among our student participants. We divided par-
ticipants into 6 groups: arts and humanities (N=132), education and
therapeutic professions (N=150), exact sciences and engineering
(N=227), law and management (N=150), life sciences and medicine
(N=222), and social sciences (including psychology; N=703). We
found the lowest capacity among law and management students (mean:

Fig. 7. A heat map of accuracy, for all 3,849 data-sets pooled together, by
spatial location of the probed item.
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2.61, SD: 0.89, 95% CI: [2.46, 2.75]) and arts and humanities students
(mean: 2.62, SD: 0.85, 95% CI: [2.48, 2.77]), medium among education
and therapeutic professions students (mean: 2.69, SD: 0.84, 95% CI:
[2.56, 2.83]) and exact sciences and engineering students (mean: 2.71,
SD: 0.80, 95% CI: [2.61, 2.82]), and highest among social sciences
students (mean: 2.75, SD: 0.81, 95% CI: [2.69, 2.81]) and life sciences
and medicine students (mean: 2.84, SD: 0.86, 95% CI: [2.73, 2.95]).
Thus, there are some differences among the different fields of study, but
overall K estimates are relatively similar for all fields, at least for uni-
versity students.

4. Discussion

By analyzing over 460,000 trials of the canonical change detection
task, the present study had two goals: first, exploring the nature of
VWM capacity, and second, better characterizing the change detection
task itself. Our unique data-set draws a “population-level” picture of
capacity limitations, which we describe below. By making our data
publicly available, we hope other researchers will be able to analyze it
in other ways, reaching new interesting conclusions regarding VWM.

The extremely large sample-size allowed us to uncover the fact that

Fig. 8. A heat map of accuracy, for a subset of 905 data-sets with counterbalancing, by spatial location of the probed item, broken down by the type of trial (change
vs. no-change) and the response-mapping. The left two panels depict change trials, with the “different” key on the (a) right-hand side or (b) left-hand side. The two
right panels depict no-change trials, with the “different” key on the (c) left-hand side or (d) right-hand side. Note that different color-scales were used for change and
no-change trials, because of the large difference in accuracy between them.

Fig. 9. Mean K estimates by (a) the month of year, and (b) the time of day in which the experiment took place. Error bars depict standard deviation.
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individual K values are naturally normally distributed, which comple-
ments previous reports of tight connections between VWM capacity and
factors such as fluid intelligence (Fukuda et al., 2010). Because capacity
is easily quantified in a stable and meaningful way using the change
detection task in its present form, we believe that measuring capacity
for each participant should be the standard practice in VWM research
(Luck & Vogel, 2013). We believe this will produce new insights on the
sources of capacity limits, as those found in the present investigation.

Several findings support recent claims that capacity does not simply
reflect the size of storage space (Fukuda et al., 2015; Mance & Vogel,
2013) and that a fundamental attribute of VWM is its active nature. K
estimates were lower for set-size 4 than for set-size 8, suggesting that
not only storage-size but other factors (e.g., selecting which items to
encode) influence VWM processes. We found initial evidence that ca-
pacity estimates are affected by these factors, as manifested in the
stronger effect set-size 8 trials have on overall K than set-size 4 trials.
Furthermore, the 4–8 drop, previously used to asses attentional control
independently from storage-size, significantly correlated with K, sug-
gesting that similar processes dominate the two measures. While the
findings based on correlations need more direct evidence to be con-
sidered convincing, they are in line with the capacity reduction in the
larger set-size, both suggesting that there’s more to capacity than mere
storage-size. We therefore argue that a central cause for individual
differences in VWM capacity is the ability to flexibly and adaptably use
the VWM storage space, that might be similar in size among individuals.
It could be that most individuals can store about 3 simple items, but
low-K individuals store only 1 task-relevant item and 2 completely ir-
relevant items, while high-K individuals efficiently select 3 task-re-
levant items, and perhaps even more by chunking several items to-
gether or by making better use of ensemble representations (Brady &
Alvarez, 2011; Haberman, Brady, & Alvarez, 2015). These abilities
would become critical in complex real-life situations, which include
vast amounts of meaningful information from which only a small subset
should be carefully selected to enter VWM. This likely contributes to the
tight connections between VWM and attentional control in a range of
situations (Vogel et al., 2005).

Despite the central role attentional control plays in individual dif-
ferences of VWM capacity, it is not likely the source of capacity limit
itself. Namely, we found that proactive interference, i.e., the ability to
prevent previously relevant items from disrupting the maintenance of
currently relevant items, doesn’t explain the low average capacity,
unlike previous claims (Unsworth & Engle, 2007). The correlation be-
tween K and the serial position within the task was quite low (ac-
counting for ∼5% of K variability across the task), and K was low al-
ready in the first trial (in fact, slightly lower than in the last trial). Thus,
VWM is genuinely limited in capacity, even without proactive inter-
ference (Lin & Luck, 2012).

A central issue in VWM research is how to best describe its capacity
limits. One leading approach views capacity as a continuous resource
that can be shared among an arbitrary number of representations (Ma
et al., 2014), trading quantity for quality as more items are added or as
their complexity increases (Alvarez & Cavanagh, 2004). The contrasting
view is that VWM has a discrete set of place-holders that can each
maintain one item (regardless of its complexity), and once all slots are
allocated additional items are left completely outside of VWM (Vogel &
Machizawa, 2004; Zhang & Luck, 2008). This is admittedly a simplified
description of a complicated debate, and many subtle intermediate
positions have been proposed (Brady et al., 2011). Regardless, the
question of whether it is fruitful to conceptualize VWM as holding a
very small set of items remains an important one. Our results confirmed
one prediction of a strict item limit, in the form of a criterion bias to-
wards “different” responses. If some of the items simply do not enter
VWM, it is natural that subjects will treat them as not matching the
contents of VWM when they are presented again (unchanged) at test.
Accordingly, the bias was larger for 8 items than for 4, meaning when
more items are presumably left outside of VWM. While it is possible

that the additional items were held in VWM with extremely low re-
solution (van den Berg et al., 2012), if their representations are so
corrupted they are unusable even when changes are very large as in the
present paradigm, it might be sufficient to treat them as effectively
absent from VWM under circumstances similar to the change detection
task employed here. It may be that in the real world, regardless of
whether VWM operates in a slot-like or resource-like manner, observers
act as if the representations are discrete given specific constraints. In
further support for a slot-like view of VWM, such that some items are
represented with very high resolution while the others are left com-
pletely outside of VWM, we found a decrease in d' (the signal detection
theory measure of memory signal strength) with increased set-size in a
manner compatible with the predictions drawn from this discrete ca-
pacity assumption. Namely, d' at set-size 8 could be well predicted, at
both the average and the individual levels, from the observed d' at set-
size 4 and the K estimates at both set-sizes. This suggests that d′ at each
set-size N reflects a mixture of K items that have high resolution that is
fixed across set-sizes, and N-K items that are not represented at all in
VWM. Notably, this analysis was based on mixing two measures with
very different underlying assumptions: K, which is a high-threshold
measure, and d′, which is a signal detection measure. Future formal
model comparisons could help clarify the source of the decrease in d′.

Importantly, while the pattern of the signal detection measures, i.e.,
the criterion shift and d′, is naturally predicted by a slot-like view of
VWM, it can also be accounted for in a flexible-resource view, and
might even be the result of factors external to the structure of VWM.
Thus, more research is needed to explore the criterion and d′ pattern in
the classic change detection task, but we do note that these measures,
which are not based on high-threshold assumptions, seem to offer initial
novel support for the predictions of a discrete slot-like structure of
VWM.

The present capacity estimations agree with numerous findings
(Cowan, 2001) that place the average capacity limit at around 3 simple
items, with vast individual differences (Luck & Vogel, 2013). Our ex-
tremely large sample-size allowed us to uncover two novel character-
istics of K estimates at the “population-level”: the normal shape of the
distribution of individual K estimates (see above), and the fact that
females have a slightly higher capacity than males.

Aside from new insights on VWM capacity, our data-set allowed us
to better characterize the canonical change detection task itself, high-
lighting important issues that should be kept in mind when using the
paradigm to investigate capacity. First, it is critical to include set-sizes
that are well above average capacity limits, as we found that K is
dominated by estimates from set-size 8 trials, although using only very
large set-sizes is not recommended because of the expected motiva-
tional effects. Second, to remove the effect of practice, the task should
include about 10–12 practice trials to allow participants to adjust their
criterion (we had ∼6 practice trials and found improvement for an-
other 5 trials). After this phase, practice has no impact, at least when
the task is as short as here. Third, our heat map revealed several lo-
cations that benefit from greater attentional allocation, specifically the
ones closest to fixation on the top of the screen, followed by the loca-
tions surrounding them. Performance was comparable at the right and
left side, and better above than below fixation. These preferences might
arise at one of several possible processing stages, and perhaps at mul-
tiple stages together. The privileged items might have more attention or
less noise at encoding, better maintenance once in VWM, or easier re-
trieval, and these options are not mutually exclusive. The source of the
spatial preference we found could be the target of future research.
Finally, counterbalancing the response keys doesn’t seem to be neces-
sary.

Importantly, all our data and conclusions are relevant to the classic
same-different change detection paradigm. In a continuous-report recall
version of this task (Wilken & Ma, 2004; Zhang & Luck, 2008), one can
disentangle the probability that an item enters VWM from the resolu-
tion with which it is represented. It is not yet known whether this
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version correlates with aptitude measure as the classical version does,
and if so which of the two factors of capacity drives this correlation
(though evidence from the canonical change detection task suggested
that it is storage-size and not resolution that correlates with in-
telligence; Fukuda et al., 2010), which calls for future research. It is
perfectly plausible that analyzing the recall change detection task will
reveal support for a more resource-like view of VWM. Notably, K from
change detection performance is tightly correlated with the probability
of remembering an item derived from continuous report (Zhang & Luck,
2008), which is another way to quantify the number of items held in
VWM. This suggests that at least some of the conclusions drawn on K
will be generalized to other methods and ways of measuring capacity.

To conclude, the change detection task is an excellent way to
measure capacity, being stable not only within an individual, but also
across the population: K was highly similar between different months of
the year, hours of the day, and, in our sample of normal students, even
ages. While it is critical to understand the task’s limitations and not
confuse it with the theoretical construct of VWM capacity, within these
limitations (e.g., paying attention to the use of complex items; Awh
et al., 2007, see the Introduction) the now-classic change detection
paradigm indeed deserves its canonical status.
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