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Different Features of Real-World Objects Are Represented in a Dependent

Manner in Long-Term Memory

Halely Balaban, Dana Assaf, Moran Arad Meir, and Roy Luria
Tel Aviv University

In the present study, we examined how real-world objects are represented in long-term memory. Two
contrasting views exist with regard to this question: one argues that real-world objects are represented as
a set of independent features, and the other argues that they form bound integrate representations. In 5
experiments, we tested the different predictions of each view, namely whether the different features of
real-world items are remembered and forgotten independently from each other, in a feature-based
manner, or conversely are stored and lost in an object-based manner, with all features depending upon
each other. Across various stimuli, learning tasks (incidental or explicit), experimental setups (within- or
between-subjects design), feature-dimensions, and encoding times, we consistently found that informa-
tion is forgotten in an object-based manner. When an object ceases to be fully remembered, all of its
features are lost, instead of only some of the object’s features being lost whereas other features are still
remembered. Furthermore, we found support for a strong form of dependency among the different
features, namely a hierarchical structure. We conclude that visual long-term memory is object-based,

challenging previous findings.
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When we see an object in the world, how do we later remember
it? It is widely known that long-term memory (LTM) is capable of
storing a vast amount of information (Brady, Konkle, Alvarez, &
Oliva, 2008; Shepard, 1967; Standing, 1973; although see Cun-
ningham, Yassa, & Egeth, 2015), and that LTM is vulnerable to
forgetting (Ebbinghaus, 1885/1913), but many open issues remain
regarding the nature of these processes. Specifically, an object can
be remembered and forgotten in a feature-like manner, with the
destiny of each feature being independent of the other features, or
it can be remembered as an integrated representation, and, in turn,
forgotten as a whole, such that all of the object’s features depend
upon each other. The general issue of dependent versus indepen-
dent processing fostered an ongoing debate, not only with regards
to memory, but at various levels of the visual system (e.g., Brady,
Konkle, & Alvarez, 2011; Scholl, 2001).

Studies supporting the centrality of integrated objects provided
evidence for a performance benefit for processing two features
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when they belong to one object, relative to when the same two
features belong to different objects. For example, when subjects
were asked to report both the orientation and the size of a line,
accuracy was similar to a condition where subjects reported only
the orientation. However, when they reported the orientation and
the size of two different superimposed objects, accuracy declined
(Duncan, 1984; for reviews of object-based attention see Chen,
2012; Scholl, 2001). Similar findings were reported in the change
detection paradigm that taps into working memory ability: Several
studies found that although adding more to-be-remembered objects
dramatically reduced accuracy, adding more features to each ob-
ject was cost-free, suggesting that integrated objects, and not
individual features, are the basic building blocks of working mem-
ory (e.g., Luria & Vogel, 2011; Pratte, Park, Rademaker, & Tong,
2017; Vogel, Woodman, & Luck, 2001; see also Gajewski &
Brockmole, 2006). In contrast, other studies did find a cost when
additional features were added to objects encoded in working
memory (Oberauer & Eichenberger, 2013; Olson & Jiang, 2002;
Wheeler & Treisman, 2002). Importantly, even studies that did
find some cost when features were added to an object still dem-
onstrated a benefit when different features appeared as part of the
same object, compared to when these features were distributed
among several objects (e.g., Fougnie, Asplund, & Marois, 2010).
Because both object-based and feature-based representations have
been demonstrated in working memory, it is possible that working
memory operates at multiple levels of representation (Brady et al.,
2011; Vergauwe & Cowan, 2015).

In the context of LTM, it has been shown that when simple
items such as colored shapes are retained in LTM, their features
are better recalled when presented within the same item (Walker &


mailto:halely@mit.edu
http://dx.doi.org/10.1037/xge0000716

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

2 BALABAN, ASSAF, ARAD MEIR, AND LURIA

Cuthbert, 1998; Wilton, 1989), suggesting an object-based repre-
sentation in visual LTM. Similarly, it was demonstrated that when
participants recall several features of the same object, all of these
features are recalled together (Ceraso, Kourtzi, & Ray, 1998),
indicating that objects are learned in an integrated manner. How-
ever, this evidence relied on simple stimuli, and thus it remained
possible that the features of more complex visual stimuli, as the
ones we normally encounter in our everyday lives, are represented
independently in LTM. There have been claims that the features of
real-world objects (e.g., faces) are retained somewhat indepen-
dently in LTM. Support for this came from recognition (“old/
new”) tasks which tested participants on stimuli that were either
presented during the study phase, completely new, or conjunction
stimuli, which were comprised of parts of several different previ-
ously studied items, that is, these were “new” items whose parts
were “old.” The probability of recognizing an item as “old” was
higher for conjunction stimuli than for completely new items
(Albert, Reinitz, Beusmans, & Gopal, 1999; Reinitz, Lammers, &
Cochran, 1992). This was taken to suggest that the different
remembered features of an item were held separately in LTM,
because participants’ judgment of memory was based on whether
a feature previously appeared, not only on its relation to the other
features of the item to which it belonged. Yet, others have argued
and demonstrated that these conjunction errors could be due to the
greater familiarity of the compound stimuli, not to the fact an
item’s features are independently held in memory (Jones & Ja-
coby, 2001; Jones, Jacoby, & Gellis, 2001).

A related line of work showed that especially for recollection-
based responses (but less so for familiarity-driven responses),
across many stimuli and features, there is a “stochastic depen-
dence” between the different source-dimensions of a given item
(e.g., Meiser & Broder, 2002). Namely, when items are learned in
multidimensional contexts, the successful retrieval of one source
dimension is correlated with the successful retrieval of the other.
Although the phenomenon of stochastic dependence is well estab-
lished, its basis is still debated (although see Horner & Burgess,
2013, 2014; for computational and neural analyses in the context
of episodic memory), and it is unclear whether the different
sources are actually bound together, or conversely whether the
better performance is simply due to overall better memory to some
items (for a review, see Hicks & Starns, 2015).

Recently, the issue of dependent (object-based) versus indepen-
dent (feature-based) storage and forgetting of complex stimuli in
LTM was examined by Brady and colleagues (Brady, Konkle,
Alvarez, & Oliva, 2013), using pictures of everyday objects (in
another recent paper, independence vs. dependence in LTM of
real-world objects was tested using different paradigms by Utoch-
kin & Brady, 2019; we return to this study in the General Discus-
sion). They manipulated two object dimensions, by using different
exemplars of the same object and presenting these similar objects
in different states. Thus, each object-category included four pic-
tures, created by factorially combining two possible exemplars in
two possible states (see Figure 1a and 1b). The experiment began
with an incidental study phase, in which participants viewed pic-
tures of objects (one at a time) while performing a cover task.
Then, participants were given a surprise memory test and were
asked to select the object that was previously presented out of the
four possibilities. Brady et al. (2013) calculated, for each partici-
pant, a dependence score, based on the memory benefit one feature

gains from remembering the other feature (see Brady et al., 2013,
for more details). To control for factors such as the overall accu-
racy of each dimension, they examined the change in this depen-
dence score over time, by testing one group of subjects shortly
after the study phase, and another group after 3 days. They found
a high level of dependency between state and exemplar after a
short delay, which could have been taken as evidence for inte-
grated representations. However, in the long delay, Brady et al.
(2013) found no significant dependency between the features.
They concluded that the features were not integrated to begin with
and were simply maintained separately at a high accuracy level,
meaning that the actual memory storage and forgetting of the
features was independent.

We argue that Brady et al.’s (2013) analysis is based on an
implicit assumption of independence between the four possible
responses. This is because at each step two of the response-
categories are pooled together, while ignoring the other two
response-categories (e.g., the conditional probability of state on
exemplar is the correct-correct category divided by the sum of the
correct-correct and correct-incorrect categories). Yet, the test
phase includes all four pictures simultaneously, meaning that the
possible response categories are very likely to affect each other.
Indeed, using the same paradigm, we will provide evidence for a
dependency of the response categories. We will also present log-
ical arguments against this assumption in the General Discussion.
Moreover, when applying Brady et al.’s (2013) original analysis to
our results, for 73% of the subjects at least one of the obtained
dependence scores, which should range between 0 and 1 because
it is a probability score, was either larger than 1 or smaller than 0,
which is difficult to interpret (see the online supplementary mate-
rial for the results of this analysis; we return to compare the two
approaches in the General Discussion). Although we hesitate to
draw strong conclusions in this situation, it should be noted that
even the dependency scores that were within the logical range
were not in line with the original claims. Specifically, across five
experiments we failed to replicate the decrease in dependency
across time. In any case, because of these issues we propose a
different analysis, which we used in five conceptual replications of
Brady et al. (2013).

The Present Analysis

The first step of our analysis is to separate responses that reflect
some memory from those reflecting complete guesses (Figure 1c).
We start with the four response categories for each object: the
correct exemplar in the correct state (“correct-correct”), the correct
exemplar in the incorrect state (“correct-incorrect”), the incorrect
exemplar in the correct state (“incorrect-correct”), and the incor-
rect exemplar in the incorrect state (“incorrect—incorrect”). Our
assumption is that when subjects have no relevant memory, each of
the four presented objects should be equally likely, which means
that all four response categories logically contain roughly compa-
rable numbers of guessed objects. Critically, we assume that the
incorrect—incorrect category reflects only guessing, because this
category does not include any correct information about the ob-
ject’s exemplar or state. Therefore, it should be chosen only when
subjects encounter an object for which they have no available
relevant memory, because if they had usable knowledge of the
item’s exemplar or state, they would have chosen the correct
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The paradigm used by Brady et al. (2013),
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Incorrect, Incorrect,
Correct
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Experiment 2, and our analysis of the present experiments.

(a) The study phase, in which subjects view a single image on each trial, in a filler size-judgment task. The
particular variant chosen for each object-category was randomly determined for each participant. (b) The surprise
test phase (the colored frame is solely for illustrative purposed, and was not presented in the actual experiment),
in which subjects were asked to choose the image they saw during the study phase, out of four possibilities: two
exemplars in two states each. For different subjects or items, this phase took place either immediately after the
study phase (in the short delay condition), or 3 days later (in the long delay condition). (¢) The analysis we
performed in all five experiments of the present study: subtracting the number of incorrect—incorrect responses
from each of the other response categories, to control for random guesses. See the online article for the color

version of this figure.

feature for at least one dimension (it is possible that they have
other knowledge of the item, but that it doesn’t help choosing
among the four possibilities). Hence, we argue that the frequency
of this responses category mainly reflects a guessing process (plus
errors), and we can use it to estimate the “hidden” guesses in each
of the other categories, which also contain memory responses (see
Zhang & Luck, 2008, for similar assumptions).

To illustrate, if a subject chose the incorrect exemplar in the
incorrect state (i.e., “incorrect—incorrect”) on five trials, we as-
sume that they actually guessed on approximately 20 trials, which
were then evenly distributed across all four response categories
(i.e., five guess-responses in each response category). This means
that the number of responses in the other three categories is an
overestimation of that subject’s knowledge, because each category
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includes additional 5 responses that are due to random guesses.
This is true regardless of the nature of LTM storage and forgetting:
both the integrated and independent storage accounts predict
guessing, simply because subjects’ memory is not perfect. Thus,
we could subtract, for each subject, the number of incorrect—
incorrect responses from each of the other response categories, to
exclude the approximate contribution of random guesses. The
number of items in the other response-categories, corrected for
guessing, as well as the overall number of estimated guesses were
used as our main dependent measures.

Although both feature-based and object-based theories predict
that the number of fully remembered objects should decrease as
the delay is prolonged, because forgetting takes place, these the-
ories differ regarding the nature of this forgetting (see Figure 2).
According to the feature-based account, whether or not a given
feature is remembered is unrelated to the fate of the other feature,
because this model argues that features are stored independently.
Hence, in this view, fully remembered objects are objects for
which both features simply happened to be remembered. The
prediction of the feature-based model is that over time, each
feature would be forgotten independently, and hence in the long
delay some of the objects that are no longer fully remembered are
expected to be only partially remembered (only one feature instead
of both), leading to an increase in the number of partially remem-
bered objects as the delay is prolonged.

In contrast, according to the object-based account, if both fea-
tures of an object are stored in LTM, they are bound together (e.g.,
Luck & Vogel, 1997). Therefore, when items are forgotten, they
should be completely forgotten, rather than being partially remem-
bered. Thus, over time, the decrease in the frequency of correct-
correct responses should be mirrored only by an increase in the
proportion of guessing (because when there is no available infor-

Predictions: object-based forgetting

Il Short delay
B Long delay

Correct, Correct, Incorrect,
Correct Incorrect Correct

Estimated number of guesses

Number of items (corrected for guessing)

Random guessing

mation, participants choose one random option), instead of more
partially remembered objects.

Critically, the main prediction of the object-based account can-
not be properly tested in a between-subjects design as the one used
in the original study: the decrease over time in the number of fully
remembered objects cannot be directly compared to the increase
over time in the number of random guesses, because these mea-
sures are differences between the short and long delay conditions,
and in a between-subjects design every subject participates in only
one delay condition. Therefore, we tested these predictions in a
within-subjects design replication of Brady et al. (2013), with an
explicit study-phase (Experiment 1). We went on to perform four
additional replications, manipulating different aspects of the study
to establish the generality of our findings. Experiment 2 used a
within-subjects design with an implicit study-phase, Experiment 3
included a between-subjects design with Brady et al.’s (2013)
original stimuli, in Experiment 4 we used a novel stimulus-set we
created, which manipulated different dimensions than in the orig-
inal study, and Experiment 5 included a shorter presentation time.
Across all five experiments, we found strong support for the
object-based forgetting hypotheses, over the feature-based forget-
ting account.

Importantly, although there is only one type of feature-
independence in forgetting (i.e., forgetting one feature of the object
has no influence on the chance of remembering another feature),
there are many ways in which the different features of an object
can depend on each other in forgetting. For example, forgetting
one feature can lead to either a lower (but still existing) chance of
remembering another feature or to a zero chance of remembering
that feature. Both of these situations point to a dependency, simply
because one feature influences the fate of another feature. In
addition, dependency can either be symmetrical, where all features

o

Predictions: feature-based forgetting

N Short delay
W Long delay

N
|

Correct,
Correct

Estimated number of guesses

Number of items (corrected for guessing)

Correct,
Incorrect

Incorrect,

Random guessing
Correct

Figure 2. An illustration of the predictions made by the dependent (object-based) and the independent
(feature-based) storage accounts. The hypothetical number of items in each response category are presented, as
well as the estimated frequency of random guessing, separately for the short and long delay conditions. Both
theories can explain high frequency of fully remembered items in the short delay, but as the delay gets longer,
the predictions of the two theories diverge. (a) If forgetting of one feature is dependent on the other feature, the
decrease in fully remembered items should be mirrored only by an increase in the number of random guessing,
because if one feature is forgotten, all features of the objects should be forgotten. (b) If forgetting is independent
for each feature, when moving from the short delay to the long delay, the items that are no longer fully
remembered can either be fully forgotten (i.e., random guessing), or one of their features can be forgotten while
the other feature is still remembered, leading to an increased in the number of partially remembered objects. See

the online article for the color version of this figure.
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affect each other’s chances of being remembered to a similar
extent, or it can be asymmetrical such that one feature has prece-
dence over the others. In this hierarchical type of dependence, if
one (privileged) feature is forgotten, the chance of remembering
the other features diminishes, but not vice versa. Although every
type of dependence found will contradict feature-independence, if
indeed LTM operates in an object-based manner, it is interesting to
examine the characteristics of this dependence. To formally com-
pare the full continuum of dependency to independency, we intro-
duce a formal multinomial model and present the results of apply-
ing this model to all five experiments. The results of the
multinomial model agree with the results from our simplified
analysis, revealing strong dependence between the features. Fur-
thermore, both methods converged into a hierarchical view of
memory dynamics, such that state, orientation, and color depend
on exemplar, a point we elaborate on in the General Discussion.

Notably, our proposed analysis (much like the original analysis
by Brady et al., 2013, and the multinomial model) treats memory
as a high-threshold process. Aside from this, our approach in-
volves as few assumptions as possible: We only assume that the
incorrect—incorrect response category reflects random guesses that
are evenly distributed across all four response-categories. Criti-
cally, we will show that this very simple guessing estimation is
enough to support the predictions of a highly dependent storage,
providing strong support for the possibility of object-based repre-
sentations in LTM.

Experiment 1

Our goal was to examine whether the different features of an
object are forgotten in a dependent or an independent manner from
LTM. To allow statistically testing the main prediction of the
dependent forgetting account, that the number of fully remembered
objects forgotten from the short to the long delay would be
mirrored only by an increase in guessing rate (instead of items
being partially forgotten), we used a within-subjects design, such
that for each participant half of the objects were tested immedi-
ately after the study phase, and the other half after 3 days. Because
the long delay test could not be a surprise in this design (because
all of the subjects were already tested after a short delay), we
informed subjects before the study phase that they will be later
tested, and thus the study phase was not incidental.

Each delay condition included a test of half the objects seen
during the learning phase, meaning we needed more stimuli than in
Brady et al.’s (2013) study. To that aim, we created a novel set of
similar stimuli. Instead of using photographs of real-world items,
we used a computer-aided design (CAD) software to create the
objects. This stimulus-set is freely available at: http://people.socsci
.tau.ac.il/mu/royluria/. Creating the stimuli in a CAD software
allowed us much better control over the variation of each item. For
example, when using photographs, two different exemplars of a
given object-category in the stimulus-set usually differ in many
dimensions (e.g., material, size, the presence of additional parts,
etc.). In the CAD software stimulus-set, each exemplar differed
only in its shape and not in other dimensions. In addition, we
manipulated two other dimensions, namely the material the object
is made of (e.g., plastic or metal for a water bottle), and its
orientation (i.e., angle-of-view). Using computer-generated stimuli
allowed us to change each manipulated dimension without affect-

ing the other dimensions at all (e.g., two different exemplars could
have the exact same material). To test whether our results are
specific to any given dimension, we compared the LTM storage of
material and orientation. All subjects saw the same stimuli during
the study phase, but different subjects were tested on different
dimension combinations in the test phase (see Figure 3). Half of
the subjects were tested on the exemplar and material of the
computer-generated objects (with orientation being held constant),
and the other half were tested on the exemplar and orientation
(with material being held constant). Importantly, in all experiments
we found no differences between the two sets of stimuli or the
different dimensions, suggesting that our conclusions can be gen-
eralized.

Materials and Methods

Data and code for all experiments is publicly available at the
Open Science Framework: https://osf.io/3kjgv/.

Participants. Subjects were Tel Aviv University students
who received payment or partial course credit for participation. All
subjects had normal or corrected-to-normal visual acuity and nor-

a Exemplar and material tested
(orientation held constant)

PR

- S

b Exemplar and orientation tested
(material held constant)

Y ar

¢_~.
50~ Ll

Figure 3. The test phase of the computer-generated stimuli blocks in
Experiments 1 and 2, and of Experiments 3 and 4. (a) The material
condition, in which subjects were asked to choose the image they saw out
of the four combinations of exemplar and material. The orientation of all
objects was the same as in the study phase. (b) The orientation condition,
in which subjects were asked to choose the image they saw out of the four
combinations of exemplar and orientation. The material of all objects was
the same as in the study phase. See the online article for the color version
of this figure.
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mal color-vision (by self-report). All participants gave informed
consent following the procedures of a protocol approved by the
Ethics Committee at Tel Aviv University. The experiment in-
cluded 32 participants (M,,,. = 22.4, 28 women). Sample size was
determined based on Brady et al.”s (2013) Experiment 2 reported
effect sizes (M: Cohen’s d = 0.8), which necessitates approxi-
mately 30 participants for 85% power (32 participants were used to
ensure an equal number in each combination of tested dimension
and stimuli order, see below). Note that we replicated the basic
findings in 5 experiments.

Stimuli. Stimuli were taken from two stimulus-sets. The first
is Brady et al.’s (2013) published set of stimuli, including 100
categories of everyday objects. Each category included four col-
ored pictures, created by the factorial combination of two exem-
plars and two states (i.e., different poses or part-configuration)
each. The second is the novel set of stimuli, created using a CAD
software (SolidWorks, Dassault Systemes, Vélizy-Villacoublay,
France). Models of two exemplars of 74 categories of everyday
objects were found in free databases, and adjusted to eliminate
accessory details, leaving the most basic model that could still be
recognized as a specific object. We created four variations of each
model (i.e., exemplar), by factorially manipulating the orientation
(i.e., viewing angle) of the object and the material it is made of, for
a total of eight variations for each category, and then produced
high-resolution renderings on a neutral background. The set of
stimuli is publicly available at our lab website: http://people.socsci
.tau.ac.il/mu/royluria/.

Procedure. The experiment included a study phase and two
test phases (see Figure la and 1b). Each trial of the study phase
included the presentation of a single object (approximately 5.5° X
5.5° degrees of visual angle, from a viewing distance of 60 cm) at
the center of the screen. Subjects had to indicate via button press
whether the object depicted in the picture is larger or smaller than
a reference box (an actual 3D plastic box) shown to them prior to
the experiment. Following the picture presentation, subjects had
2,000 ms to respond; 400 ms after subjects’ response, or 2,400 ms
after picture offset if no response was emitted, the next picture
appeared. Each picture was presented for a maximum of 800 ms (if
participants responded faster than 800 ms, the picture disappeared,
and the next picture appeared after a 400-ms delay). This was the
same filler task used in the original study (aimed to encourage
subjects to attend to the presented stimuli), but subjects were
informed before starting this task that they will later be tested on
the presented stimuli (although the exact nature of the test was not
detailed). Each participant viewed a single picture from each
category (randomly selected). The items from each stimulus-set
were presented in separate blocks (order was counterbalanced
across participants), and within each block the items were pre-
sented in a random order.

Immediately following this task, subjects were given a memory
test on half of the items from each stimulus-set (i.e., the short delay
condition). Three days after the first session (this delay was iden-
tical to the one used in Brady et al. (2013), to allow for ideal
comparison with the original findings), subjects performed a sec-
ond memory test, on the other half of the items (i.e., the long delay
condition). In the test phase, subjects had to indicate which of four
variations (see below) of an object they saw during the study
phase. The four pictures were presented in an imaginary 2 X 2 grid
(according to the manipulated feature-dimensions, see below), and

subjects selected one of them using the mouse cursor, in an
unspeeded manner. No feedback was given in any of the phases.

Three of the 100 object-categories from Brady et al.’s (2013)
stimulus-set, and four of the 74 object-categories from the
computer-generated novel stimulus-set were used as practice
items. Hence, there were a total of 167 experimental trials in the
study phase (one block of 97 trials and another block of 70 trials).
The short delay memory test included two blocks, one with either
48 or 49 (randomly determined) object-categories from Brady et
al.’s (2013), and the other with 35 object-categories from our
computer-generated stimuli. The long delay memory test also
included two blocks, each with the remaining stimuli of the cor-
responding stimulus-set.

At test, subjects were shown two exemplars of each object, each
in two levels of another manipulated dimension. The location of
the previously shown item was randomly chosen in each trial, and
the other three items were located accordingly. For the stimuli
from Brady et al.’s (2013) set, the other dimension was state (as in
the original study). For the computer-generated stimulus-set, half
of the subjects were tested on the items’ material (holding orien-
tation constant) and the other half were tested on their orientation
(holding material constant). Responses at test were unspeeded.

Analysis. Our main dependent measure was the number of
responses in each category, after accounting for random guessing.
To achieve this, we used the number of incorrect—incorrect re-
sponses as an estimate for the amount of guessing and subtracted
this number from the other three response-categories. We comple-
mented the p values for our main results with Bayes factors (where
BF,, indicates the degree of support for the alternative hypothesis,
and BF,,, indicates the degree of support for the null) calculated
using the JASP software, with a wide (Cauchy scale of 1) prior. In
addition, we report effect sizes (partial n* or Cohen’s d) and 95%
confidence intervals (CIs).

Results

Opverall, subjects chose the correct image for an average of 49.7
items (SE = 1.6; 59% of the tested items) in the short delay, and
31.4 items (SE = 0.8; 38% of the tested items, which is still
significantly above chance: #(31) = 13.22, p < .001, d = 2.34,
95% CI [0.36, 0.40]) in the long delay. The difference between
delays was significant, #31) = 11.63, p < .001, d = 2.06,
difference 95% CI [0.18, 0.26], indicating that extending the delay
was successful in inducing forgetting.

Our main goal was to test whether the objects’ features were
stored in a dependent manner in LTM, by examining performance
across time (i.e., changes between the short and long delay con-
ditions). The first step was to evaluate the overall guessing rate in
each delay, using the frequency of the incorrect-incorrect re-
sponses. We assume that selecting a response that conveys none of
the correct relevant information about the object is the result of a
guessing process, and that guessing is random, leading to an equal
distribution of guesses across all response categories. Thus, we
subtracted the frequency of the incorrect—incorrect cell from the
other response categories to account for random guessing. Note
that the proportion of random guesses cannot distinguish between
an object-based storage and a feature-based storage (both predict
guessing), and therefore this analysis serves only to evaluate the
overall guessing rate, and to account for guessing in the response
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OBJECT-BASED DYNAMICS IN LONG-TERM MEMORY 7

categories that do include at least some information about the
target. All subsequent analyses were based on the frequency of
each response category after correcting for random guesses. The
results are presented in Figure 4.

A longer delay led to a decrease in the number of fully remem-
bered objects, with 24.0 fewer objects that were fully remembered,
#(31) = 10.92, p < .001, BF,,, > 2,000,000,000, d = 1.93, 95% CI
[19.52, 28.48]. It is obviously not surprising that a longer delay
produced forgetting, but each theory makes a different prediction
regarding the nature of this forgetting process. According to the
object-based account, all these objects should be completely lost,
because the different features of the object should be forgotten
together. Therefore, the decrease in the number of fully remem-
bered objects should be mirrored only by an increase in the
guessing rate. In contrast, the feature-based account predicts inde-
pendent forgetting, meaning that at least some of the objects that
were fully remembered will become partially remembered. In line
with the object-based prediction, in the long delay, random
guessing occurred for 23.1 more objects than in the short delay,
which did not significantly differ from the 24-item decrease in
fully remembered objects, #(31) = 0.44, p = .66, BF,, = 6.64,
d = 0.08, 95% CI [—3.16, 4.91]. Furthermore, there was no
support for the feature-based prediction of a significant increase
in the number of partially remembered objects between the
short and long delays, for both exemplar and the other probed
feature, both + < 1, both ps > .54, both BF,;s > 6, both ds <
0.12, exemplar-only 95% CI [—2.63, 3.20], other-only 95% CI
[—1.56, 2.87]. These results provide strong support for the
object-based account, because objects were completely lost and
not partially remembered.

In line with this, in the short delay condition, there were more
items for which subjects remembered both features (41.8 items,
SE = 2.2) than items for which they remembered only the exem-
plar (8.4 items, SE = 0.8), #(31) = 15.55, p < .001, BF,, > 2 X
10", d = 2.75, 95% CI [29.08, 37.86], or only the other feature
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(state, orientation, or material; 2.0 items, SE = 0.7), #(31) = 17.27,
p < .001, BF,, > 3 X 10", d = 3.05, 95% CI [35.14, 44.55].
According to the object-based view, this is support for an inte-
grated representation. However, according to the feature-based
view, this should be taken to indicate good independent memory:
If both features are remembered accurately, there will be many
items for which both features are indeed remembered. If this is the
case, after forgetting takes place, more items are expected to be
only partially remembered, simply because memory becomes
worse as the delay is prolonged. Importantly, in the long delay
there were also more fully remembered objects (17.8 items, SE =
1.3) than partially remembered objects: only exemplar (8.7 items,
SE = 1.3): 1(31) = 8.28, p < .001, BF,, > 5,000,000, d = 1.46,
95% CI[6.93, 11.45]; only the other feature (2.7 items, SE = 0.8):
1(31) = 11.34, p <.001, BF,, > 6,000,000,000, d = 2.00, 95% CI
[12.45, 17.92].

This trend cannot be attributed to subjects simply having overall
excellent memory for both features and remembering them inde-
pendently, because the results strongly indicate that memory for
the various features is actually asymmetrical: the feature other than
exemplar (state, material, or orientation) was very poorly remem-
bered when exemplar was forgotten. There were more objects for
which only the exemplar was correctly chosen, than objects for
which only the other feature (state, material, or orientation) was
correctly chosen, both after a short delay, #(31) = 5.98, p < .001,
BF,, = 14,677, d = 1.06, 95% CI [4.20, 8.55], and after a long
delay, #(31) = 4.79, p < .001, BF,, = 581, d = 0.85, 95% CI
[3.44, 8.56]. Thus, subjects were much more likely to remember
the exemplar of an item and not remember its other features, than
to remember only the state, material or orientation of an item
whose exemplar is forgotten. Note that the low number of objects
in this category cannot be attributed to the other features being
simply too difficult, because there were more objects for which
both exemplar and the other feature were remembered than objects
for which only exemplar was remembered (see above). Thus, state,
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Figure 4. 'The results of Experiment 1: The number of objects chosen (after accounting for random guesses,
by subtracting the number of objects for which neither feature was remembered) in each response-category and
the overall estimated number of guesses, by delay length. Error bars depict standard error of the mean. The
numbers on the figure indicate the decrease in the number of fully remembered items, and the increase in the
number of random guesses. See the online article for the color version of this figure.
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material, or orientation could be remembered quite well, as long as
the object’s exemplar was also remembered. This suggests a strong
form of dependency between the features in memory, namely a
hierarchy: only if an object’s exemplar is remembered, can its
other features be remembered as well. We return to this point in the
General Discussion.

Finally, it is important to make sure that the dependent forget-
ting findings are not limited to certain stimuli or dimensions. First,
every subject was tested on both pictures and computer-generated
objects, but an analysis of variance (ANOVA) with delay and
stimuli type as factors on the number of remembered items as a
dependent variable revealed no effect of type, F(1,31) =2.01,p =
.17, m? = 0.06, and no interaction of type and delay (F < I, p =
.55, n2 = 0.01). Second, for the computer-generated items, half of
the subjects were tested on the objects’ orientation, and half on
their material (the second dimension was always exemplar), but an
ANOVA with tested dimension and delay as factors on the number
of remembered items revealed no effect of dimension, F(1, 30) =
2.12, p = .16, n2 = 0.07, and no interaction of dimension and
delay, F(1,30) = 2.42,p = .13, n? = 0.07. We conclude that the
two types of stimuli (pictures vs. computer-generated images) and
the three dimensions (state, orientation, and material) were re-
tained similarly in memory.

Experiment 2

The results of Experiment 1 suggested that the different features
of objects were lost from LTM in a dependent manner. This
contrasts with the results of Brady et al. (2013), which supported
an independent-forgetting account. One key difference between
the current setup and the original one, however, is that our task
included an explicit memory test instead of an implicit one. Our
goal in Experiment 2 was to examine whether using an incidental
learning phase, without subjects knowing that they will be later
tested on the items, will lead to an independent forgetting of each
feature. The experiment was the same as in Experiment 1, except
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for the instructions given to subjects, which now did not mention
that they will be later tested.

Materials and Methods
Participants. We used 32 fresh participants (M,,, = 23.9, 26

women).
Stimuli. Stimuli were the same as in Experiment 1.
Procedure. The procedure was identical to Experiment 1,

except that only after they completed the cover task were subjects
told that they would be tested on the items presented in the
(incidental) learning phase. Because this was a within-subjects
design, this means that the short delay test was a surprise test, but
the long delay test was not.

Results

Overall, subjects chose the correct image for an average of 48.6
items (SE = 1.8, 58% of the tested items) in the short delay, and
an average of 29.3 items (SE = 1.2, 35% of items) in the long
delay, which was still above chance: #(31) = 7.21, p < .001,d =
1.28,95% CI[0.32, 0.38]. The decrease in accuracy over time was
significant, #(31) = 11.87, p < .001, d = 2.10, difference 95% CI
[0.19, 0.27], showing forgetting. The results, after correcting for
random guesses, are presented in Figure 5. They replicated the
findings of Experiment 1.

A longer delay led to a decrease in the number of fully remem-
bered objects, with 26.1 fewer objects that were fully remembered,
t(31) = 12.18, p < .001, BF,, > 40,000,000,000, d = 2.15, 95%
CI [21.73, 30.46]. The prediction of the object-based account is
that these items will be fully forgotten, meaning that in the long
delay they will be completely guessed, instead of being only
partially forgotten (with one of their features still remembered). In
contrast, the prediction of the feature-based account is that at least
some of the fully remembered objects will become partially re-
membered, which should translate to an increase in the number of
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Figure 5. 'The results of Experiment 2: The number of objects chosen (after accounting for random guesses,
by subtracting the number of objects for which neither feature was remembered) in each response-category and
the overall estimated number of guesses, by delay length. Error bars depict standard error of the mean. The
numbers on the figure indicate the decrease in the number of fully remembered items, and the increase in the
number of random guesses. See the online article for the color version of this figure.
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partially remembered items in the long delay. Critically, as in
Experiment 1, the decrease in the number of fully remembered
items was matched by the increase in the number of guesses, which
was 27.2, 1(31) = 0.62, p = .54, BF,, = 6.06, d = 0.11, 95% CI
[—2.65, 4.96], without a significant change in the number of
partially remembered objects, for both exemplar, #(31) = 1.46,p =
.15, BF,, = 2.67,d = 0.26, 95% CI [—0.77, 4.64] and the other
probed feature, #(31) = 0.64, p = .52, BF,, = 5.96,d = 0.11,95%
CI [—1.55, 2.99].

Again, after a short delay, there were more fully remembered
items (40.7 items, SE = 2.5) than partially remembered items, for
both the exemplar (9.7 items, SE = 0.8), #(31) = 12.66, p < .001,
BF,, > 10'", d = 2.24, 95% CI [26.01, 35.99], and the other
feature (1.7, SE = 0.7), t(31) = 15.62, p < .001, BF,, > 2 X 10",
d =276, 95% CI [33.91, 44.09]. Importantly, this was true also
when the delay was prolonged, with more items for which both
features were remembered (14.6, SE = 1.7) than items for which
only the exemplar was remembered (7.8, SE = 1.0), 1(31) = 3.79,
p < .001, BF,, = 43.3,d = 0.67, 95% CI [3.16, 10.52], or only
the other feature was remembered (2.44, SE = 1.0), t(31) = 8.37,
p < .001, BF,, > 7,000,000, d = 1.48,95% CI [9.22, 15.16]. This
shows that even after forgetting took place, subjects’ responses
were not randomly distributed among all response categories, but
focused on fully remembered objects, in line with the dependent
storage account.

As in Experiment 1, the results cannot be explained by both
features (exemplar and the other feature) simply having excel-
lent and independent memory, because accuracy for one feature
strongly depended on the other feature. Specifically, there were
more objects for which only exemplar was remembered than
objects for which only the other feature was remembered, both
after a short delay, #(31) = 7.79, p < .001, BF,, > 1,000,000,
d = 1.38,95% CI [5.91, 10.09] and after a long delay, #31) =
4.74, p < .001, BF,, = 516, d = 0.84, 95% CI [3.05, 7.64].
Again, this also cannot be explained by overall poor memory
for the other feature, because it was very well remembered
when exemplar was remembered, as can be seen from the larger
number of fully remembered objects than objects for which
only exemplar was remembered. Thus, state, material or orien-
tation were remembered only if exemplar was remembered,
suggesting a hierarchy (i.e., a form of dependency) of the
features in memory.

Supporting the generality of the findings, as in Experiment 1,
within the computer-generated stimuli, there was also no signifi-
cant effect of tested dimension (F < 1,p = .9, n2 = 0.0005), and
no significant interaction of dimension and delay (F < 1, p = .79,
m? = 0.002). Although the interaction of stimuli type (pictures vs.
computer-generated items) was marginally significant (F = 3.73,
p = .06, m* = 0.11), there was no significant effect of stimuli type
on the number of remembered items (F = 1.06, p = .31, n*> =
0.03).

Thus, using an incidental learning paradigm led to very similar
results as using explicit learning instructions, namely dependent
forgetting dynamics. In both Experiment 1 and Experiment 2, we
found that as objects were forgotten from LTM, their different
features were not lost independently, but rather all their features
were lost as one unit.

Experiment 3

The results of Experiments 1 and 2 supported a dependent
forgetting account of LTM dynamics, unlike the conclusion of
Brady et al. (2013). Contrary to the originally study, however, we
used a within-subjects design. This allowed us to directly compare
the decrease in the number of fully remembered items with the
increase in guessing, which, as predicted by the dependent forget-
ting account, indeed closely matched each other. Perhaps the fact
that we probed subjects’ memory twice (although on different
items) somehow contributed to the observed dynamics of features
being lost dependently from LTM. In Experiment 3, we conducted
a closer replication of Brady et al.’s (2013) Experiment 2, using
only the original stimuli, and a between-subjects design, such that
we randomly assigned the subjects to either the short delay or the
long delay conditions. This design will only allow us to statisti-
cally test the prediction of the feature-based account, but not the
main prediction of object-based account (because there is no
individual-subject measure of the changes between the short and
long delay). However, the predicted pattern of the object-based
view is still clear: If items are forgotten in an object-based manner,
the decrease in the number of fully remembered items should only
be mirrored by an increase in guessing, and the number of partially
remembered items should not increase. Although we will not be
able to statistically test one of the predictions, it is important to
note that in the feature-based account, there is no reason to expect
such a specific pattern of results.

Materials and Methods

Participants.
women).

Stimuli.
1 and 2.

Procedure. The procedure was the same as in Experiment 2,
except that half of subjects were given the surprise memory test on
all of the items immediately after the study phase (the short delay
condition), and the other half were tested 3 days after the study phase
(the long delay condition). In the long delay condition, subjects knew
that they will continue the experiment in a second session 3 days after
the first one but were not told (even after the study phase) what was
the purpose of this session.

We used 20 fresh participants (M, = 23.8, 12

We used only the real-world pictures of Experiments

Results

Overall, subjects chose the correct image for an average of 56.5
items (SE = 4.1, 58% of the tested items) in the short delay, and
an average of 36.6 items (SE = 2.2, 38% of items) in the long
delay, which was still above chance: #9) = 5.60, p < .001, d =
1.77,95% C1[0.33, 0.43]. The decrease in accuracy over time was
significant, #(18) = 4.27, p < .001, d = 1.91, difference 95% CI
[0.10, 0.31], indicating forgetting. The results after accounting for
random guesses are presented in Figure 6.

In the long delay condition, there were 27.8 fewer objects that
were fully remembered than in the short delay, #(18) = 4.31, p <
.001, BF,, = 70.89,d = 1.93,95% CI [14.23, 41.37]. Importantly,
if this forgetting indicated the loss of an integrated object, all off
these objects are expected to be fully forgotten, that is, mirrored by
an increase in guessing without a change in the number of partially
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Figure 6. The results of Experiment 3: The number of objects chosen (after accounting for random guesses,
by subtracting the number of objects for which neither feature was remembered) in each response-category and
the overall estimated number of guesses, by delay length. Error bars depict standard error of the mean. The
numbers on the figure indicate the decrease in the number of fully remembered items, and the increase in the
number of random guesses. See the online article for the color version of this figure.

remembered items. Conversely, if objects were forgotten in a
feature-based manner, the number of partially remembered items
should increase. In line with the object-based view, as in Experi-
ments 1 and 2, there was no significant difference in the number of
partially remembered items, for both exemplar, #(18) = 0.62, p =
.54, BF,, = 2.77, d = 0.28, 95% CI [—4.30, 7.90] and state,
1(18) = 0.95, p = .35, BF,, = 2.25,d = 043, 95% CI [—241,
6.41]. Although we cannot statistically compare the decrease in the
number of fully remembered items with the increase in the number
of guesses (because the between-subjects design means there is no
measure of the changes between the delays for each individual
subject), we note that numerically they are quite similar, with 31.6
more guess responses in the long delay (i.e., even slightly more
items in the long delay). Of course, this cannot be used as strong
support for the dependent forgetting account, but along with the
pattern of partial responses, the results of Experiment 3 are in line
with those of the previous two experiments.

In addition, after a short delay, there were more fully remem-
bered items (47.1 items, SE = 5.4) than items for which only the
exemplar (10.9 items, SE = 1.8), #(9) = 6.26, p < .001, BF,, =
246,d = 1.98, 95% CI [23.11, 49.29], or only the state (1.4 items,
SE = 1.4), 19) = 8.70, p < .001, BF,, = 2,405, d = 2.57, 95%
CI [33.81, 57.59], were remembered. Importantly, the same was
true also for the long delay, with more fully remembered (19.3
items, SE = 2.9) than partially remembered objects, for both
features—only exemplar (9.1 items, SE = 2.1): 1(9) = 2.87,p =
019, BF,, = 3.62, d = 091, 95% CI [2.15, 18.25]; only state
(—0.6 items, SE = 1.4): #(9) = 7.00, p < .001, BF,, = 525, d =
2.21, 95% CI [13.47, 26.33]. Thus, even after forgetting took
place, subjects’ responses were focused on the correct-correct
category, instead of being randomly distributed among all response
categories, in line with a dependency of the different features of
each object.

As in previous experiments, this pattern of results cannot be
explained by excellent memory for both features independently,
because the level of memory for one feature depended on the
other: there were more objects for which only exemplar was
remembered than objects for which only state was remembered,
both after a short delay, #9) = 4.41, p = .0017, BF,, = 28.70,d =
1.39,95% CI [4.62, 14.38] and after a long delay, #(9) = 3.99, p =
.0032, BF,, = 16.73,d = 1.26, 95% CI [4.2, 15.2]. As mentioned
before, this pattern cannot be explained by poor state memory,
because state was very well remembered given that exemplar was
remembered, producing a larger number of fully remembered
objects than objects for which only exemplar was remembered.
Thus, state could be very well remembered, but only given that the
object’s exemplar was remembered, otherwise memory was quite
poor. We elaborate on the hierarchy of features arising from this in
the General Discussion.

Experiment 4

In Experiment 3, we closely followed the methods of Brady et
al.’s (2013) study, but obtained support for a high level of depen-
dency between the different features of objects that are forgotten
from LTM, and no support for the feature-based view. Our goal in
Experiment 4 was to further generalize these findings, by replicat-
ing them using our computer-generated stimuli, which are more
controlled, and involve dimensions other than state (namely ori-
entation and material).

Materials and Methods

Participants. We used 40 fresh participants (M,,, = 22.9, 33
women).
Stimuli. We used only the computer-generated stimuli of Ex-

periments 1 and 2.
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Procedure. The procedure was the same as in Experiment 3,
except that half of the subjects were tested on orientation and half
on material (all of the subjects were tested on exemplar), as in
Experiments 1 and 2.

Results

Opverall, subjects chose the correct image for an average of 39.4
items out of 70 (SE = 1.5; 56% of the tested items) in the short
delay, and 27.6 items (SE = 1.1; 39% of items) in the long delay,
which was significantly above chance, #(19) = 9.05, p < .001,d =
2.02, 95% CI [0.36, 0.43]. The difference between delays was
significant, #(38) = 6.38, p < .001, d = 2.02, difference 95% CI
[0.12, 0.22], indicating forgetting. The frequencies of each re-
sponse category, after accounting for random guessing, presented
in Figure 7, is a replication of the previous experiments.

As expected, after a longer delay the number of fully remem-
bered objects decreased (by 16.7 objects), #38) = 6.72, p < .001,
BF,, > 200,000, d = 2.13, 95% CI [11.63, 21.67]. Although the
feature-based view predicts an increase in the number of partially
remembered objects, the object-based view predicts no increase,
because items should be completely lost (and hence only the
guessing rate should increase). As in the previous experiments, we
found no increase in the number of partially remembered objects,
which did not statistically differ between the delays—exemplar:
t(38) = 1.37, p = .18, BF,, = 1.90, d = 0.43, 95% CI [—1.14,
5.94] (note that there were fewer partially remembered items in the
long delay); material or orientation—#(38) = 0.09, p = .93,
BF,, = 4.29,d = 0.03, 95% CI = [—3.07, 3.37]—meaning there
was no support for the feature-based view’s prediction. Further-
more, although we cannot statistically compare the two numbers,
we note that the increase in the number of random guesses, 19.2
objects, was of similar magnitude to the decrease in the number of
fully remembered items. This is in line with the dependent forget-
ting hypothesis, according to which the objects that were no longer
fully remembered were not partially forgotten but rather fully
forgotten.
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Also in line with the object-based view, in the short delay, there
were more fully remembered objects (34.3 items, SE = 1.9) than
partially remembered objects—only exemplar (11.9 items, SE =
1.3): 1(19) = 9.31, p < .001, BF,, > 1,000,000, d = 2.08, 95% CI
[17.29, 27.31]; only material or orientation (3.2 items, SE = 0.8):
#(19) = 16.79, p < .001, BF,, > 10'°, d = 3.76, 95% CI [27.18,
34.92]. As in the previous experiments, these results cannot be
explained by assuming that both features happened to be remem-
bered, because there were more fully remembered objects also in
the long delay condition (17.6 items, SE = 1.5), compared with
only exemplar (9.6 items, SE = 1.2): #(19) = 4.44, p < .001,
BF,, = 112, d = 0.99, 95% CI [4.25, 11.85]; and compared with
only the material or orientation (3.1 items, SE = 1.3): #(19) = 9.15,
p <.001, BF,, > 700,000, d = 2.05,95% CI [11.22, 17.88]. Thus,
more objects were fully remembered even after substantial forget-
ting took place, in line with a dependent storage account.

As before, the results cannot be explained by both features being
independently excellently remembered, because we found strong
evidence for a dependency of one feature on the other, in an
asymmetric way. There were more objects for which only exem-
plar was remembered than objects for which only the other feature
was remembered, both after a short delay, #(19) = 10.46, p < .001,
BF,, > 5,000,000, d = 2.34, 95% CI [7, 10.5], and after a long
delay, #(19) = 4.82, p < .001, BF,, = 249, d = 1.08, 95% CI
[3.68, 9.32]. Furthermore, this cannot be explained by poor memory
for the other feature, because there were more objects for which both
it and exemplar were remembered than objects for which only exem-
plar was remembered, meaning that memory for the other feature was
very good when exemplar was remembered. This suggests that the
memory of the other feature (material or orientation) depends on the
memory of exemplar, a point we return to in the General Discussion.

The effect of probed dimension (orientation or material) on the
number of remembered items was marginally significant, F(1, 36) =
3.59, p = .07,m* = 0.09, but the interaction of dimension and delay
was not significant (F < 1, p = .93, 1> = 0.0002), suggesting that
forgetting was similar between the probed dimensions.
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Figure 7. 'The results of Experiment 4: The number of objects chosen (after accounting for random guesses,
by subtracting the number of objects for which neither feature was remembered) in each response-category and
the overall estimated number of guesses, by delay length. Error bars depict standard error of the mean. The
“other” feature was material for half of the subjects, and orientation for the other half; the results are collapsed
across these two dimensions. The numbers on the figure indicate the decrease in the number of fully remembered
items, and the increase in the number of random guesses. See the online article for the color version of this figure.
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12 BALABAN, ASSAF, ARAD MEIR, AND LURIA

Experiment 5

In the previous four experiments, we found no evidence for a
separate forgetting of the different features. Note that during the
study phase, we presented the items for 800 ms, and there is
evidence that the integration of different features develops over
time, at least in working memory (e.g., Balaban & Luria, 2016;
Luria & Vogel, 2011; Woodman & Vogel, 2008). In Experiment 5,
we shortened the presentation time to only 200 ms. If the binding
process takes time to complete, the prediction is that shortening
object presentation might increase the level of independence be-
tween the different features, because they will not have enough
time to be integrated.

Materials and Methods

Participants. We used 40 fresh participants. The data from
three participants (one in the short delay and two in the long delay)
was lost due to experimenter error. The final set of subjects thus
included 37 participants (M,,, = 23.2, 21 women).

Stimuli. Stimuli were the same as in Experiment 4.

Procedure. The procedure was the same as in Experiment 4,
except that during the study phase, each picture was presented for
200 ms instead of 800.

Results

Overall, subjects chose the correct image for an average of 38.2
items (SE = 2.2; 55% of the tested items) in the short delay, and
25.6 items in the long delay (SE = 1.1; 37% of items), which was
significantly above chance: #(17) = 6.97, p < .001,d = 1.64, 95%
CI [0.33, 0.40]. The difference between delays was significant,
#(35) = 4.94, p < .001, d = 1.63, difference 95% CI [0.11, 0.26],
indicating forgetting. The frequencies of each response category,
after accounting for random guessing, appear in Figure 8, and they
suggest that shortening the presentation duration of the objects did
not change the overall pattern of results.
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The long delay resulted in 18.1 fewer fully remembered objects,
#(35) = 5.00, p < .001, BF,, = 1,233, d = 1.64, 95% CI [10.75,
25.44], indicating forgetting. As in the previous experiments, there
was no significant difference in the number of partially remem-
bered objects—exemplar: #(35) = 0.96, p = .34, BF,, =2.78,d =
0.32, 95% CI [—1.66, 4.67]; material or orientation: #(35) = 1.85,
p = .07, BF,, = 0.98, d = 0.61, 95% CI [—0.2, 4.5] (indicating
there were slightly fewer partially remembered items in the long
delay). Thus, there was no support for the feature-based prediction
of an increase in the number of partially remembered items, and
support for the object-based prediction of no change. Furthermore,
although we cannot statistically compare the decrease in the num-
ber of fully remembered items to the increase in guessing, we note
that they once again closely match, with 21.7 more randomly
guessed items in the long delay relative to the short delay (here, as
in the previous experiments, the increase was even slightly larger
than the decrease). Overall, this is in line with a dependent for-
getting account, in which items moved from being fully remem-
bered to fully forgotten.

As in the previous experiments, in the short delay, there were
more fully remembered objects (31.4 items, SE = 3.0) than par-
tially remembered objects—only exemplar (8.9 items, SE = 1.0):
1(18) = 7.47, p < .001, BF,, = 32,008, d = 1.71, 95% CI [16.11,
28.73]; only material or orientation (2.3 items, SE = 0.7) #(18) =
9.69, p < .001, BF,, > 1,000,000, d = 2.22, 95% CI [22.75,
35.35]. As in the previous four experiments, even in the long
delay, there were more fully remembered objects (13.3 items,
SE = 1.7) than partially remembered objects—only exemplar (7.4
items, SE = 1.2): #(17) = 3.29, p = .004, BF,, = 9.87,d = 0.77,
95% CI = [2.09, 9.58]; only the other feature (0.2 items, SE =
0.9): 1(17) = 9.01, p < .001, BF,, > 250,000, d = 2.12, 95% CI
[10.04, 16.18]—suggesting that after forgetting occurred, items
were still largely fully remembered, in line with the dependent
storage account.

As before, the results cannot be explained by both features being
excellently remembered independently, because memory for the
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Figure 8. 'The results of Experiment 5: The number of objects chosen (after accounting for random guesses,
by subtracting the number of objects for which neither feature was remembered) in each response-category and
the overall estimated number of guesses, by delay length. Error bars depict standard error of the mean. The
“other” feature was material for half of the subjects, and orientation for the other half; the results are collapsed
across these two dimensions. The numbers on the figure indicate the decrease in the number of fully remembered
items, and the increase in the number of random guesses. See the online article for the color version of this figure.
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different features was highly dependent. Specifically, there were
more objects for which only exemplar was remembered than
objects for which only the other feature (material or orientation)
was remembered, both after a short delay, #(18) = 5.42, p < .001,
BF,, = 727,d = 1.24, 95% CI [4.06, 9.20], and after a long delay,
t(17) = 6.87, p < .001, BF,, = 8,457, d = 1.62, 95% CI [5.04,
9.51]. Again, this also cannot be explained by overall poor mem-
ory for the other feature, because it could be very well remem-
bered, but only when exemplar was remembered: there were more
objects for which both features were remembered than objects for
which only exemplar was remembered, suggesting a hierarchy of
the features in memory.

Similar to the previous experiments, there was no effect of
probed dimension or an interaction of dimension and delay on the
number of remembered items (both Fs < 1, both ps > .7, both
m?s < 0.005), suggesting similar patterns across the different
dimensions.

A Multinomial Process Model of Feature Dependency

The results of all five experiments supported the notion of an
object-based memory, regardless of the dimensions, stimuli, learn-
ing tasks, experimental setups, or encoding times used. These
findings were based on the analytical approach we described, of
estimating the number of random guesses in a simplified manner,
by using the number of incorrect—incorrect responses. Although
this approach has the benefits of being quite straightforward and
relying on a small number of assumptions (that memory is a
high-threshold process, and that guesses are uniformly distrib-
uted), it is important to examine the data also in a manner that

| Remember exemplar? I

would make all of the assumptions explicit and formally estimate
the level of dependency.

Hence, we next describe a formal generative model for the
memory of the different features of an object, namely a multino-
mial process model (for a review, see Batchelder & Riefer, 1999).
For a given object, participants will remember its exemplar with
probability E. If the exemplar is remembered, the other feature will
be remembered with probability F';, and if the exemplar is not
remembered, the other feature will be remembered with probabil-
ity F,. We assume a 50% probability of guessing for each feature
that is not remembered, because there are two options (correct/
incorrect) from which participants should choose randomly when
guessing. This model can be translated to the different response
categories in our task (CC = correct exemplar and correct other-
feature; CI = correct exemplar and incorrect other-feature; IC =
incorrect exemplar and correct other-feature; II = incorrect exem-
plar and incorrect feature), as shown in Figure 9.

The probabilities of each response category are given by the
following equations:

p(CC)=EXF,+EX(1—-F)X05+(1—E)XFy;X05
+(1—E) X (1 —Fy) %025
p(CDH=EX (1 —F})X 0.5+ (1 —E) X (1 Fy) X025
pUC)=(1—E) X FyX 0.5+ (1 — E) X (1 — Fy) X 0.25
pUD = (1 — E)X (1 — Fy) X 0.25

From the above equation, we can isolate the following observed
combinations of the three model parameters:

1
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Figure 9. A multinomial process tree model. The probabilities of each step are indicated in parentheses (E =
remembering exemplar; F; = remembering the other feature given that exemplar was remembered; F, =
remembering the other feature given that exemplar was not remembered). Final response categories are presented
in circles (CC = correct exemplar and correct other-feature; CI = correct exemplar and incorrect other-feature;
IC = incorrect exemplar and correct other-feature; II = incorrect exemplar and incorrect other-feature).
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E X F, = p(CC) = p(CI) = pIC) + p(ll)
EX (1= F))=2Xp(CD — p(ID)
(1= E) X Fy =2 X (p(IC) — p(II))

As can be seen, we have three parameters and three independent
equations, meaning the parameters can be extracted for each par-
ticipant (in Experiments 1 and 2, separately for each delay condi-
tion), with the probabilities of the response category being the
empirical probabilities observed in the experiment. If a calculated
combination (E X F|, E X (1 — F,),or (1 — E) X F, see above)
was negative, it was set to 0.

For example, F, is calculated as follows:

Fi_ p(CC) = p(CD — p(IC) + p(Il)
23X (p(CD) — plID))

1-F,

Two main theoretical models can be postulated regarding the
dependency of the other feature on exemplar, namely indepen-
dency versus dependency. The predictions of these theoretical
models focus on the F, parameter of the multinomial model (see,
e.g., Meiser & Broder, 2002). In an independent model, the prob-
ability of remembering the other feature is, by definition, indepen-
dent from the fate of the exemplar: F, = F,. Any significant
deviation from this pattern points to a dependence of the two tested
features, and specifically any dependent model predicts there is a
larger probability of remembering the other feature if the exemplar
was remembered than if it was not: F, < F, (for a similar
approach, see, e.g., Meiser, 2014). As mentioned in the introduc-
tion, dependence can take on a range of different forms, and in the
extreme case, if the exemplar is not remembered, the other feature
is never remembered: F, = 0. However, note that the model’s
parameters cannot be negative for any participant, effectively
creating a skewed distribution of potential F,, values, meaning that
it is not likely to find support for this type of dependence at the
group level. To get a better indication of the level of dependence,
we therefore examined also how many participants’ F,, values are
within a small range (1 SD) from O.

The results of applying the tree model to all of our five exper-
iments are presented in Table 1 (one participant in Experiment 1
was excluded from the analysis because the model failed to pro-
duce numerical results for them, probably due to low overall
accuracy). The trend in all experiments, for both the short and long
delays, was for a larger F, than F,,, a result that was significant in
all but Experiment 4. This provides strong evidence that the
different features in our experiments were not independent from
each other.

Furthermore, we found that F,, was either O or close to O for
many of the participants. Across experiments and delays, we found
that 50-80% of participants had a very low value of F. This
suggests that not only do exemplar and the other feature depend on
each other in LTM, in many cases there is complete hierarchy,
such that the other feature cannot be remembered if exemplar is
forgotten.

Thus, the results of the formal model analysis converged with
our simplified analysis. Both approaches clearly contradict the
notion that the different features of an object are independent from
each other in memory. Instead, memory seems to be object-based,
such that there is a dependency between the different features of
the same object. The multinomial model also corroborated our
finding that the dependency is very strong, with the other feature
almost never remembered if the exemplar is not remembered (i.e.,
F, was close to 0). This suggests a hierarchical structure of
memory, with other features depending on exemplar, a point we
return to in the General Discussion.

General Discussion

The present study examined whether different features of the
same object are remembered and forgotten independently or de-
pendently in LTM. Across five experiments, participants viewed
pictures or computer-generated renderings of real objects in a
learning task (explicit or incidental), and in the test phase, asked to
indicate which of several versions of the object they saw, choosing
among four alternatives that orthogonally varied in two dimen-

Table 1
Results of the Multinomial Tree Model by Experiment and Delay
Experiment and delay F, F, F, vs. F, % F, =0 % F, <0+ SD E
Experiment 1
Short .64 (.04) .07 (.02) p <.001,d =233 39% 55% .57 (.03)
Long 31 (.05) .07 (.01) p <.001,d = 0.77 35% 71% 31 (.04)
Experiment 2
Short .59 (.03) .1(.02) p <.001,d =227 38% 66% .58 (.03)
Long .35 (.06) .07 (.01) p <.001,d=0.72 38% 56% .27 (.03)
Experiment 3
Short .59 (.07) .15 (.05) p <.002,d =149 40% 50% .58 (.06)
Long 42 (1) .05 (.03) p <.02,d =095 60% 80% 31 (.03)
Experiment 4
Short 44 (.05) 31(.07) p=.23d=28 25% 60% .61 (.02)
Long .26 (.06) .19 (.04) p=49,d=.16 30% 55% 37 (.02)
Experiment 5
Short .5(.05) .24 (.06) p <.002,d = 0.87 37% 58% .54 (.05)
Long .39 (.07) .07 (.03) p <.002,d = 0.87 72% 72% 31 (.03)

Note.

We present the average estimated parameters F, and F, (SE in parentheses), the p value and Cohen’s d of the comparison between F, and F,,, the

percentage of participants for which F,, = 0, the percentage of participants for which F, was within 1 SD from 0, and average estimated E parameter (SE
in parentheses). If features are independent, F; should be equal to F,,, and if features are dependent, F'; should be larger than F,.
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sions: exemplar and state, exemplar and material, or exemplar and
orientation. Probing subjects’ memory either immediately after the
study phase or 3 days later allowed us to test the dynamics of
memory performance as forgetting takes place. Our experiments
followed the protocol of Experiment 2 from Brady et al. (2013),
but we analyzed the results using a novel approach that examines
the frequency of different responses (i.e., both features remem-
bered correctly, only exemplar remembered correctly, or only the
other feature—state, material, or orientation—remembered cor-
rectly) after accounting for random guesses.

Dependent Forgetting in LTM

All experiments provided strong evidence for dependent (i.e.,
object-based) forgetting in LTM. First, in all five experiments, we
found more fully remembered objects (i.e., items for which both
features were remembered) than partially remembered objects (i.e.,
items for which only one feature was remembered) in the long
delay. This suggests that even after substantial forgetting occurred,
responses were not randomly distributed with regards to each
item’s different features, in line with the object-based forgetting
account, and in contrast to the feature-based forgetting account.
This cannot be explained by good memory for both features
independently, because when the exemplar was not remembered,
the other feature was almost never remembered (see further dis-
cussion below).

When the test was delayed, the number of fully remembered
objects decreased, which is expected due to forgetting. If this
forgetting is independent for each feature, some of these objects
should be partially remembered in the long delay. Conversely, if
forgetting is dependent, objects that are no longer fully remem-
bered should be completely forgotten. In all five experiments, we
found that the decrease in fully remembered objects was mirrored
only by an increase in the frequency of random guesses that occur
when no relevant memory is available, while the frequency of
partial responses was similar across delays. This provides a second
support for the object-based forgetting view, and goes against the
feature-based forgetting view, because when an object is lost from
LTM, all of its features are lost together. These results echo many
findings of object-based dynamics at earlier stages of visual pro-
cessing, that is, attention and working memory (e.g., Scholl, 2001;
Vogel et al., 2001), which suggests that objects are the basic
building blocks on which much of visual processing operates.

Notably, in all five experiments, some of the objects were only
partially remembered in the long delay, and it could be argued that
this shows independent forgetting, such that these items were fully
remembered after a short delay but then one of their features were
forgotten. However, it is important to note that some of the items
were partially remembered already after a short delay. Therefore,
it is reasonable to assume that the partially remembered items in
the long delay mainly reflect items for which the other feature was
not encoded in the first place. We return to the issue of partial
responses in a later section, where we explain why their presence
isn’t in itself an indication of feature-independence.

Another line of support for a dependency between the different
features came from the multinomial process tree model. This
formal mathematical analysis allowed us to compare the probabil-
ity of remembering the other feature given that the object’s exem-
plar is remembered, to the probability of remembering this feature

when the exemplar is forgotten. If the two probed features are
independently forgotten, the two probabilities should be the same.
The model converged with our simplified analysis, such that the
probability of remembering the other features of objects whose
exemplar was forgotten was lower than the probability of remem-
bering the other features of objects whose exemplar was remem-
bered. In fact, for most participants across our experiments, the
probability of remembering the other features of objects whose
exemplar was forgotten was close to zero.

Finally, we note that our findings were consistent across all five
experiments, which varied in the types of stimuli (real-world
pictures vs. computer-generated items), learning tasks (explicit or
incidental), setups (within- or between-subjects designs), probed
feature-dimensions (state, material, and orientation), and presen-
tation durations (800 or 200 ms). This stability supports the gen-
erality of the present findings. One factor we did not vary was the
length of the long delay, which was fixed at three days across all
experiments. The reason for this was to keep the setup as similar
as possible to the original study of Brady et al. (2013), to make the
comparison maximally straightforward. It might be that a shorter
delay would allow more partial responses to arise, so an interesting
direction for future studies would be to more systematically vary
the delay length, probing some objects after an intermediate delay
(e.g., a few hours).

Dependent Storage in LTM

Our main findings suggest that when information is lost from
LTM, this happens largely in a dependent manner for the different
features of an object. A related but different question regards the
nature of LTM storage. Notably, the way in which items are
forgotten does not necessarily demonstrate how these items were
maintained before being forgotten (see below). Forgetting implies
a failure of the memory system, while remembering indicates a
stable and successful memory process. Notably, Brady et al.’s
(2013) original findings regard only the issue of dependent versus
independent forgetting, and not storage. Looking at our data, we
can ask whether remembering, rather than forgetting, is object-
based or feature-based.

Across all experiments, most responses (78—91%) reflected an
all-or-none storage, with objects either being fully remembered or
completely forgotten. Examining the remaining 9-22% of objects,
which were only partially remembered, can shed light on the
format of memory storage. The clearly asymmetrical pattern of
these responses supports a strong form of dependency between the
features, namely a hierarchy, with the fate of the object’s state,
material or orientation depending on the memory for the object’s
exemplar. In all five experiments, we found more objects for
which only exemplar was remembered than objects for which only
another feature (state, material, or orientation) was remembered
while exemplar was forgotten. In fact, the frequency of partial-
responses for the other features was close to 0. Note that this
cannot be explained by the difficulty level of these features,
because in all five experiments we found more fully remembered
objects (i.e., objects for which both exemplar and the other feature
were remembered) than objects for which only exemplar was
remembered. This is especially telling when considering that in
different experiments we tested three different dimensions along-
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side exemplar, namely state, material, and orientation, but the
results were stable across all dimensions.

Thus, our results strongly indicate that different features are not
only lost in a dependent manner, but also retained in a dependent
manner in LTM. Specifically, the fact that more exemplar-only
items than other-only items were found suggests a hierarchical
structure of LTM storage, at least for the dimensions we tested.
Only if an object’s exemplar is remembered, can its other features
(e.g., state) also be remembered. In other words, it is possible to
remember, for example, a state-free exemplar, but not to remember
an exemplar-free state. This points to a dependency of features
within LTM.

Note that our results suggest that even if an exemplar is
remembered, not all the other features are mandatorily remem-
bered, a point we return to later. However, our main analysis
showed that in most cases, items are either fully remembered or
completely forgotten, and critically, that fully remembered ob-
jects do not become partially remembered but fully forgotten,
meaning that objects are forgotten in an all-or-none manner.
The findings described in the above section simply suggest that
even for objects that were not perfectly encoded, memory is still
not independent but hierarchical, with the other feature depend-
ing on exemplar. However, it is important to keep in mind that
in the present results, the form of dependency was in almost all
cases “all-or-none.”

Finding a hierarchy in LTM dynamics raises several questions,
which we hope future studies can help answer. First, at what stage
does this hierarchy emerge? It might occur during storage in LTM,
during the retrieval of information for response purposes, or al-
ready be present during the items’ encoding into LTM. Because
the frequency of partial responses was similar in the short and long
delays, our results suggest that at least some level of hierarchy was
present early on, presumably at the encoding of the items, but this
should be tested directly. It is of course entirely possible that
hierarchy emerges at multiple stages, or at different stages for
different items or dimensions.

Another issue concerns the generality of the hierarchy. Is the
asymmetrical pattern between exemplar and other features (state,
color, and orientation) specific to LTM, or might it be a more
general property of our cognitive system? The present results can
only speak of LTM, and this issue has not been systematically
studied in related areas such as working memory. Interestingly, a
hint for the possible generality of the hierarchy can be found in
cognitive development, where it was shown that infants can use
shape and size information to individuate objects earlier than other
features such as color (Wilcox, 1999; Woods & Wilcox, 2006).
Thus, exemplar, as defined by shape, might be a fundamental
feature by which we categorize items in everyday life, a hypothesis
which future studies might examine.

Finally, another open question remains regarding the depen-
dency between the features other than exemplar. For example,
future studies could examine whether an object’s material and
orientation are also maintained in a dependent manner in LTM.
These different features might not have an obvious hierarchy
between them, and hence it would be interesting to test whether
they posit the same type of dependency as observed here (i.e.,
hierarchy), or are represented in a more symmetrical way.

Different Analytical Approaches to the Study of LTM
Dynamics

Over the years, the issue of feature-based versus object-based
representations was studied by employing different approaches,
each with its own advantages and limitations. Some studies exam-
ined object-based benefits with techniques similar to those used in
attention and working memory research, by comparing memory
for features when they belong to the same object and when they
belong to different objects (Walker & Cuthbert, 1998; Wilton,
1989), but this relied on very simple stimuli. Other studies used
more complex, real-world stimuli such as faces or scenes and
tested for conjunction errors that were interpreted as reflecting an
independence storage of features (Albert et al., 1999; Reinitz et al.,
1992), but there have been claims that this reflects familiarity
rather than the format of storage (Jones et al., 2001; Jones &
Jacoby, 2001). Still others examined the dependence between the
different source dimensions that make up the context of an item,
however whether the stochastic dependence observed reflects ac-
tual binding remains debated (for a review, see Hicks & Starns,
2015).

Recently, Brady et al. (2013) suggested a new analysis method
based on an estimation of the dependency of features, calculating
the ratio of the observed dependency (the difference between
conditional accuracy when the second feature was correct and
when it was incorrect) and the dependency predicted from a fully
dependent model that takes into account the feature’s rate of
remembering. However, this treats the different response-options
(i.e., being correct in two features, and being correct in only one)
as independent, because the calculation examines the responses in
one dimension while pooling across the other dimension. Since at
test the different variants of the object were presented together, this
approach suggests participants can ignore exemplar and respond
only to state, for example. However, we presented evidence that
the different features are likely to affect each other.

We suggested an alternative approach, which compares the
different response-options, after correcting for random guesses in
a simple manner. We argue that this further supports the dependent
representation account: using coarse simplified assumptions was
enough to reveal strong evidence for object-based organization of
memory. Notably, a formal mathematical model of memory and
guesses approves the conclusions from our analysis. Note that our
analysis assumes a difference between the processes involved in
no-memory responses (i.e., guessing) and those involved in re-
sponses that include at least some memory. Conversely, Brady et
al.’s (2013) original analysis assumes that even when subjects have
some memory, they can respond in an independent manner for the
different features, which is circular when the question at hand
regards the independency of features. Because our findings, based
on this new analytical method, differ from the original ones, it is
important to compare the two approaches.

Brady et al.’s (2013) method has the benefit of relying on a
well-defined computational model, which potentially can produce
a good estimate of feature dependency. However, when attempting
to apply the original method to our results, despite the fact that the
dependence score is a proportion (of the observed dependency out
of the predicted perfect dependency) and should thus range be-
tween 0 and 1, for many of our subjects the results far exceeded
this range (for 73% of the subjects at least one of the obtained
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dependence scores exceeded the theoretically possible range; see
the online supplementary material). This might be due to the
smaller number of trials (per delay period) in our study, or to lower
overall accuracy, pointing to potential limitations of Brady et al.’s
method, which might work well only for data with high accuracy
rates. It is important to note that the differences between the
original study and ours were not dramatic, and yet Brady et al.’s
method did not fit many cases in our data-set. Furthermore, even
the estimates that were within the logical range (less than 60% of
the data) failed to replicate the original claims of a decrease in
dependency across time, suggesting that the original method might
not be stable enough. In addition, as mentioned above, the model’s
assumption of response-independency is problematic in a para-
digm that simultaneously presents multiple variants of an object.

The major drawback of our approach is that it is based on a
rough estimate of random guesses. However, this might also be an
advantage, because our method includes relatively few assump-
tions as for the nature of responses or forgetting. This could mean
that our approach is suitable in relatively noisy situations (e.g., few
trials, or low accuracy). Notably, with relatively low overall ac-
curacy, as found here, one could have expected that almost no fully
remembered objects are found. Instead, we systematically ob-
served a larger number of fully remembered than partially remem-
bered objects, supporting the dependent storage account.

Importantly, we accept that Brady et al.”s approach is valid in
some situations, and simply argue that our proposal is an equally
valid alternative. Because the conclusions drawn from the two
approaches did not converge, we posit that more research is needed
before a clear-cut conclusion regarding dependent or independent
forgetting could be reached.

Recently, Utochkin and Brady (2019) tested the integration of
the different features of real-world objects in LTM in two novel
ways. In the first task, after viewing objects from different cate-
gories, participants were presented with four images for each
category: two exemplars, each in two states. They were asked to
select the correct state for each exemplar. When each exemplar
was associated with a different state (as compared with both
having the same state), participants were at chance in selecting the
correct state for each exemplar. This was taken to contradict a
holistic storage of exemplar and state, which the authors argued
should predict no interference because the features of each item are
separately stored (although note that interference could instead
arise at the test phase, see Awh, Barton, & Vogel, 2007). In the
second task, the study phase included a single exemplar from each
category, and in the test phase participants were shown two ex-
emplars and asked to choose the old one. Performance was unaf-
fected by irrelevant changes in the test items’ states, suggesting
participants could generalize across states.

Although the results from these two paradigms were interpreted
as supporting independent storage of features, they are actually in
line with the hierarchical dependent storage that we found. This is
because Utochkin and Brady (2019) showed that an object’s ex-
emplar could presumably be maintained without state information
being available, but there was no indication that state can be
remembered without exemplar information (this direction was
simply not tested). Indeed, when two features that should not have
this hierarchical structure, namely luminance and hue, were used,
the generalization was abolished, suggesting the two features were
held together in LTM.

The Format of Storage Versus the Nature of
Forgetting

As mentioned above, we systematically found a small but reli-
able number of partial responses, that is, objects for which only
exemplar, but not the other probed feature, was remembered. This
suggests that even if an object’s exemplar is remembered, its other
features might not be remembered. Does this pose a problem for
the dependent structure of LTM? We maintain that it does not and
argue that three distinct issues should be addressed when consid-
ering the nature of LTM-storage.

The first is whether all of an item’s features are mandatorily
remembered, for which the answer seems to be a simple “no.” For
example, imagine you remember a person’s name, but not their
date of birth. In fact, there is recent evidence that in working
memory tasks, subjects are completely unable to report a salient
feature of a target when completing a task on another feature, even
for the feature used to identify the target (H. Chen & Wyble,
2015). For example, when subjects repeatedly reported only the
location of a letter among digits, and then were surprisingly asked
to report the target’s identity, which is the very attribute used to
choose the letter in all preceding trials, they were unable to do so.
This strongly suggests that not all of an object’s features are
automatically encoded. Similarly, it should be perfectly reasonable
to encode an object’s exemplar but not its state. Therefore, we
argue that finding some items for which only some of the features
were remembered does not contradict a dependent structure of
LTM, because those features that were encoded could still be
stored in a unitized manner. This goes against some of the past
models and investigations of feature- versus object-based memory,
which treated “object-based” as implying an all-or-none rule in
storage (i.e., that all of the object’s feature, regardless of task-
relevance, difficulty, etc., must be encoded). Instead, we maintain
that whenever the independency of features is violated, this sug-
gests that the object is a meaningful unit of representation.

The second question regards the nature of forgetting for the
features that were remembered to begin with. This is the main
issue addressed by Brady et al.’s original study. They found
support for an independent loss of features, however using very
similar stimuli and manipulation, we could not replicate their
results. Instead, across five experiments, both our analysis and the
formal mathematical model supported a dependency of features.
Future studies might help clarify whether in other conditions
forgetting can occur in an independent manner, but our results
strongly suggest that forgetting the different features of real-world
objects happens in a dependent manner.

Moreover, we claim that the way in which information is lost
from LTM does not inevitably reveal the way in which the infor-
mation was stored prior to forgetting. Even if forgetting occurs
independently for each feature, it does not necessarily entail that
storage is independent. It is plausible that different features of an
object are stored in LTM as one “node,” but when forgetting takes
place, the integration breaks down and some of this information is
gradually lost (while some information is still available), perhaps
even in an independent way for each feature.

Thus, the third, and arguably most interesting, question, is the
dependency of features while they are maintained in LTM, and
specifically, whether all the remembered features of an object are
stored together. In other words, if you remember an object’s
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exemplar and its state (or a person’s name and their date of birth),
are these two pieces of information independent of each other (for
a similar approach, see Ceraso et al., 1998)? Some past evidence
supported an independent storage (Albert et al., 1999; Reinitz et
al., 1992), whereas others supported a dependent storage (Walker
& Cuthbert, 1998; Wilton, 1989), and each of the previously used
methods had its limitations. Generally, it is much more difficult to
probe the nature of LTM-storage, since retrieving information
might change it, making interpretation problematic. Interestingly,
the present results did include indirect evidence for the structure of
LTM-storage, by pointing to a hierarchy of features, with exemplar
having a special status. This suggests that different features depend
on one another not only in forgetting but also during their main-
tenance in LTM.

Conclusion

Across five experiments varying in dimensions, stimuli, learn-
ing tasks, experimental setups, and encoding times, we found that
items are lost from LTM in an object-based manner. People tend
to remember objects fully and not partially, and critically, this is
not due to good independent memory for both features. Further-
more, when objects are lost from memory, forgetting is complete
and not independently for each feature. Finally, LTM appears to
have a hierarchical structure, such that an exemplar can be remem-
bered without all of the features associated with the item (state,
orientation, or material), but a feature cannot be remembered
without the exemplar that carried it. Overall, the results suggest
that forgetting from LTM occurs in a dependent manner for all of
an object’s features, and that likely the storage of these features is
also dependent.

Context

Object-based representations have been demonstrated at differ-
ent levels of visual processing, using various paradigms and ana-
lytical methods. Recent work by Brady et al. (2013) challenged
this view, by demonstrating that real-world objects are represented
as independent features in LTM. We tried to recognize the possible
reasons for this discrepancy, but our attempt to use Brady et al.’s
(2013) analytical method on our results failed. Instead, we propose
a novel analytical approach, based on only one main assumption,
which produced very strong support for object-based representa-
tions in LTM. In five experiments, we generalized these results to
a range of stimuli, experimental setups, learning tasks, feature
dimensions, and encoding times. This suggests the robustness of
our conclusion that real-world are represented in an object-based
integrated manner, also in LTM.
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