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Abstract

People have severe capacity limits when they track objects in direct percep-
tion. But how many objects can people track in their imagination? In eight
pre-registered experiments (N=277 total), we examined the capacity limits of
mentally simulating the movement of objects in the mind’s eye. In a novel Imag-
ined Objects Tracking task, we had participants continue the motion of animated
objects in their mind up to a pre-defined point. When tracking one object in
the imagination (Experiment 1a), participants gave estimations well in line with
ground truth. But, when imagining two objects (Experiment 1b), behavior al-
tered substantially: responses when tracking two objects in the imagination were
fit best by the predictions of a Serial Model that simulates only one object at
a time, as opposed to a Parallel Model that simulates objects in tandem. The
serial bottleneck is not due to response/motor limitations (Experiment 2), and
is reduced – but not eliminated – by adding extremely strong grouping cues (Ex-
periment 3). Additional studies validate that the serial effect is not due to noise,
exists in both realistic and hyper-simplified physics, is unaffected by motivation,
and is found also for naturalistic occlusion (Experiments S1-S4). Altogether, we
find that the capacity of moving entities in the imagination is likely restricted to
a single object at a time.
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Introduction

There’s only so much we can hold in mind. A well-studied example is the limited ability
to track objects in a visual scene. Numerous studies using the Multiple Object Tracking
paradigm (MOT; 1) have tested how well people track objects as they move about, and
found that tracking is limited to a handful of objects (e.g., 2; 3; 4; 5), with ongoing,
important debates regarding the exact limitations and their origins (e.g., 6; 7; 8; 9).
These limitations have been examined in great detail in direct perception, but what if
the objects are not moving in front of one’s eyes, but in the mind’s eye? What are the
limits of moving objects in the imagination?

People’s tracking of objects extends beyond immediate perception, though the exact
dynamics of tracking unseen objects or predicting future paths is still debated. In
the MOT paradigm, several studies have suggested that people do not extrapolate
trajectories to track occluded objects (e.g. 10; 11), at least under most conditions (see
12, for an exception), and instead use heuristics. On the other hand, a main current
line of research suggests people use ‘mental simulation’ to engage in physical prediction
or inference, proposing that people continue the trajectories of objects step-by-step in
their imagination (13; 14; 15; 16). This approach has accounted for how people reason
about the dynamics of objects in a variety of cases (e.g. 17; 18). While there are ongoing
discussions about people’s deviation from pure simulation (19; 20; 21), here we take as
a starting point the idea that people can and do mentally simulate the movement of
objects – and use this process to predict, keep track of, and reason about the motion
of bodies – but also that this simulation is limited. Given this starting point, our goal
was to test whether imagining the future trajectories of objects can be done for more
than a single object at a time.

Compared to the large volume of research that examines the capacity limits of
processing information available to direct perception, little is known about the limits
on tracking imagined objects. While important recent research on mental imagery has
started to demonstrate that adding more objects to an imagined static scene increases
task difficulty, as reflected in people’s subjective reports and precision (22; 23), it does
not determine the capacity limits of simulating object dynamics in imagination. To
examine this, we developed a novel Imagined Objects Tracking task. In this task,
people watch animated scenes in which objects move up to some pause-point. People
are asked to continue the motion of the objects in their imagination, and judge the
timing of various outcomes. We focused on timing, as opposed to other dependent
measures such as location accuracy (which has been extensively examined and validated
in previous work on intuitive physics, but does not determine capacity limits), for two
reasons: this avoids imposing serial response requirements, and leads to quantitatively
and qualitatively distinct predictions in models of varying capacity.
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Figure 1: Theoretical overview. When watching a scene (I), people can track a handful
of objects. But what is the capacity limit of moving objects in the imagination? In
the Imagined Objects Tracking task, people watch animations of moving objects that
pause mid-motion, and are asked to imagine how the motion continues and estimate
the timing of outcomes – here, the moment when each ball hits the ground. Response
times (reflecting the subjective impact time) are examined against the actual impact
time, which can be manipulated. (II) A priori, moving objects in the mind’s eye could
happen in Parallel (top), with some number of objects moved forward simultaneously,
or Serially (bottom), with only a single object advanced at a time. The Parallel and
Serial Models make distinct predictions (III) regarding how people would assess the
subjective impact time of objects in a dynamic scene. In the specific example shown in
the figure, the Parallel model predicts the subjective impact time of both balls would
be roughly the same, while the Serial model predicts a noticeable difference between
the first ball moved forward in the imagination (here, the purple ball) and the second
(here, the yellow ball).

We compared people’s performance in Imagined Objects Tracking to two computa-
tional models that implement different hypotheses about the capacity limits of mental
simulation (see Fig. 1). According to the Parallel Model, people can mentally advance
multiple objects simultaneously. According to the Serial Model, people only advance
a single object at a time, unfolding the trajectory of one before going back to unfold
the trajectory of another. The Serial Model predicts that every additional object dif-
ferentially increases the overall imagination-tracking time, delaying people’s response
for objects that are advanced later mentally. We note that several different sub-types
of Serial Models are possible: people might simulate the motion of one object for a
number of steps S, then switch to another object, then cycle back again to the first.
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While a Serial Model that moves each object for a few steps at a time may appear
a priori as an appealing solution to how people should mentally simulate objects, we
find it completely deviates from the data in all of our studies. Furthermore, while an
interleaved model might seem to be a middle ground between a fully serial model and
a parallel one, its quantitative predictions do not reflect anything like an averaging
of two ’extremes’. Because the interleaved model so clearly does not match our data,
and because of its unintuitive predictions, the main text focuses on the serial model
that first completely moves one object before turning to the next, but see the Supple-
mentary Information, and the Discussion, for a complete analysis and consideration
of interleaved serial models. We stress that both the Parallel and Serial Models ‘keep
around’ the same number of objects. The capacity limit we studied is with regards
to the mental simulation of the dynamics of the objects, and it is not the case that
the Serial Model neglects the existence of an object when moving the other forward in
time.

In eight pre-registered experiments, we studied the capacity limits of people’s abil-
ity to mentally simulate the future paths of objects. As a benchmark, we first tested
how precisely people track the timing of the imagined trajectory of a single object (Ex-
periment 1a). Next and most important, we examined people’s tracking of two objects
in the imagination (Experiment 1b), and compared their behavior to the predictions
of Parallel vs. Serial mental simulation models. We then further examined whether
response requirements uniquely contribute to capacity limits (Experiment 2), and how
scene regularities might help overcoming capacity limits in imagination through group-
ing (Experiment 3). In supplementary experiments, we validated that our results are
not the effect of noise (Experiment S1), complex physics (Experiment S2), motivation
(Experiment S3), or any unnatural disruption from freezing (Experiment S4). Our
main finding from these studies is that people’s capacity for moving objects in the
imagination is extremely limited. Even in the minimal case of continuing the paths of
two simple objects, people could only simulate the motion of one object at a time.

Results

Experiment 1a: Tracking a single object in the imagination

Participants in Experiment 1a saw animations of a single ball moving according to sim-
ulated physics, and pausing mid-motion. They were asked to continue the movement
of the ball in their mind’s eye and to press a key when the ball (in their imagination)
hits the ground (Fig. 2, left). We compared participants’ response times – indicating
their subjective time estimation – with the actual time it would take the ball to hit
the ground, based on the physical simulation. In different animations, the ball moved
either like a cannonball or towards the wall, and the true impact time of the ball was
manipulated by changing its height and velocity, producing values of 1, 1.2, 1.4, and
1.6 seconds from animation onset (see the Methods section for more details). The goal
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was to establish whether participants could imagine the future path of a single object
in a temporally precise way.

Figure 2: Task and Results of Experiment 1a: tracking a single object in the imagina-
tion. Circles indicate mean responses for different true impact time, error bars show
SEM, solid line shows best linear fit, shaded area is 95% CI, and dotted line shows
hypothetical perfect performance (where the subjective impact time equals the true
impact time), as reference

.

As Figure 2 (right) shows, responses were linearly modulated by the true impact
time (slightly lagging), F(1.73, 60.49) = 55.01, p< 0.001, partial η2 = 0.61; linear trend:
t(105) = 12.61, p < 0.001. Given that the delay is constant and is not modulated by
the true impact time, we take the additive factor to reflect processes unrelated to the
imagination component that is our focus, such as motor planning. The linear trend was
not an artifact of averaging across participants, and can be seen in the individual data
sets of almost all participants (see the Supplementary Information). The results suggest
that people can indeed track the dynamics of a single object in their imagination when
they observe scenes like those in our studies. These results serve as the basis for our
critical question, which we tackled in the remaining experiments: what happens to
people’s ability to track objects in the imagination as more objects are introduced.

Experiment 1b: Tracking two objects in the imagination

Experiment 1b was identical to Experiment 1a, except that each scene included two
objects (by combining two motion paths from two different scenes in Experiment 1a
into a single scene), and the task was to press a different key when each object hits the
ground (Fig. 3, top left). Scenes were created by combining two balls (one moving like
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a cannonball and one moving towards the wall) from the animations of Experiment 1a,
with the true impact time determined independently for each ball, producing a true
difference of either 0, 0.2, 0.4, or 0.6 between them. Again, we compared participants’
subjective estimation of impact time with the ground-truth impact time, and also
broke down their responses by order, meaning the first key press vs. the second one
(see also the Supplementary Informationfor an analysis that focuses on the variation in
responses instead of the means). Participants overall performed the task well (Fig. 3,
top right), with a linear modulation of subjective impact time by true impact time,
F(1.51, 52.86) = 34.99, p < 0.001, partial η2 = 0.5; linear trend: t(105) = 10.04, p
< 0.001. However, the second response happened much later than the first, F(1, 35)
= 103.71, p < 0.001, partial η2 = 0.75. The average delay was 640 ms (CI for the
intercept of the first response: [618, 845] ms, second response: [1,032, 1,405] ms), and
the interaction between response order and the true impact time was not significant,
F(2.5, 87.43) = 2.06, p = 0.12. We note that the additive delay in response was smaller
than in Experiment 1a, which might reflect a corrective attempt people engage in (i.e.,
speeding up the simulations to ’catch up’ with reality), either explicitly or implicitly.
Furthermore, the slope of responses is shallower than in Experiment 1a, suggesting
participants are overall less tuned to subtle differences in ground truth physics, likely
because of the harder task demands. Because these issues are independent from our
main focus of a potential capacity limit in simulation, we set them aside as a target
for future research.
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Figure 3: Task, results, and model predictions of Experiment 1b: tracking two inde-
pendent objects in the imagination. Circles and triangles indicate mean responses for
different true impact time and response order (’1st ball’ refers to the ball participants
responded to first, and ’2nd ball’ to the ball they responded to second), error bars show
SEM, colored lines show best linear fit, shaded area is 95% CI, dotted line shows hypo-
thetical perfect performance (where the subjective impact time equals the true impact
time), as reference. Both models made similar predictions for the first response. For
the second response, the Parallel Model predicted a minimal delay, due to perceptual
noise. The Serial Model predicted a large delay for the second response, due to ending
the simulation of the first object before turning to the second.

We created two simulation models of imagination tracking, using the physics engine
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that generated the stimuli. The Parallel Model produces two responses that are very
close to each other, because both balls are advanced simultaneously (Fig. 3, bottom
left). Only a small difference is expected, due to random noise in the simulation, which
makes one random ball slightly faster on each run. Conversely, in the Serial Model
the first ball has to run all the way through before the second ball can be simulated.
Therefore, this model produces a large delay between the first and second responses
(corresponding to the first and second ball to be simulated, respectively), in the order
of several hundred ms (Fig. 3, bottom right). This is exactly what was found in our
participants’ data, as reflected by model fits: the Serial Model explained 96% of the
variance in average responses, MSE = 0.004, while the Parallel Model explained 20%
of the variance, MSE = 0.1.

While the results are rather clear cut in favor of the Serial Model, several concerns
present themselves: First, could the serial gap be explained by a very noisy parallel
simulation? To test this, in Experiment S1 we independently examined the per-
ceptual noise surrounding object locations with a separate group of participants, and
found that it is nowhere near the levels that would be relevant for such a claim. Second,
perhaps there is something uniquely complicated about a situation involving realistic
physics of objects falling under gravity, as opposed to the more simplified stimuli often
used in MOT. To this objection, we would note that if anything, we should expect
people to be better adjusted to the more ecological task of objects colliding and falling
under gravity than the not-frequently-encountered task of objects moving in free-form,
and so people should be more likely to exhibit greater capacity in ecologically valid
tasks. Still, to examine this empirically, in Experiment S2 we tested participants in
a simplified task in which objects moved more like hockey pucks on a smooth surface as
seen from a top-down view, without collision, and not under gravity (similar to many
MOT tasks). We found the same pattern of results as in Experiment 1b: a large delay
between the responses, in line with a Serial Model. A third concern is that people
may actually be able to carry out a parallel simulation in principle, but simply choose
not to in practice, because such a simulation is more effortful than a serial simulation.
This concern faces several in-principle difficulties: participants are also presumably
motivated by opportunity costs to finish the task quickly, so why not finish it faster
through parallel simulation? And why would the total effort of serial simulation over
longer periods be less than that of parallel simulation over shorter periods? Beyond
such theoretical issues, we empirically tested the motivation concern in Experiment
S3, which was similar to Experiment 1b except that we informed participants they
would be paid a bonus to the degree to which they were close to the ground truth tim-
ing. We found that a motivation manipulation had no effect, and replicated instead the
findings of Experiment 1b. Fourth, it could be that capacity limits merely reflect some
disruption to tracking from the fact the balls froze mid-air instead of disappearing in a
more ecological way (see 24). To rule this out, in Experiment S4 we tested how well
participants estimate the impact time of balls that do not freeze but simply gradually
disappear behind an occluder. This naturalistic situation replicated the serial pattern
found in Experiment 1b. A fifth concern may be that averaging across individuals
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hides important variation, such that some people are able to simulate two or more
objects in parallel. However, an individual differences analysis shows this is not
the case. The full rationale and methods of these additional experiments and analyses
are detailed in the Supplementary Information, but to summarize briefly, our conclu-
sion from them and the results of Experiment 1b is that tracking imagined objects via
mental simulation is limited to as little as a single object.

Experiment 2: Tracking two objects in perception

The results of Experiment 1b suggest an extreme capacity limit in the imagination,
such that people only simulated the motion of a single object at a time. However, a
major objection is that the bottleneck exists due to a serial response process, instead
of in the simulation process. Notably, the requirements of response selection were
deliberately minimized: the task involved a constant response mapping, responses
were congruent with the side in which each ball appeared, separate hands were used
for the two response keys, and participants pressed each key once on each trial. Also, if
the bottleneck was such that simulation happened in parallel, but motor-delay caused
a constant delay in execution, then we would expect to see a constant additive factor
that does not depend on the true impact time of the objects, which contrasts with
our findings (for further evidence from individual differences, see the Supplementary
Information).

Still, to more directly test the possibility that the serial bottleneck was created
by response execution rather than mental simulation, we conducted Experiment 2.
The response requirements of this experiment were identical to Experiment 1b, but
the same scenes now played all the way through, meaning participants saw the balls
actually hit the ground, without the need to imagine their future paths (see Fig. 4,
left). If the serial pattern of Experiment 1b reflects any response-related factor, the
results of Experiment 2 should replicate it. But, if the serial pattern is specifically due
to the need to simulate the future trajectory of objects, Experiment 2 should be closer
to the Parallel Model’s predictions.

We found that participants performed well overall, with a linear modulation of
subjective impact time by true impact time, F(1.4, 49.04) = 570.03, p < 0.001, partial
η2 = 0.94; linear trend: t(105) = 41.3, p < 0.001. As can be seen in Figure 4 (right),
instead of replicating the serial pattern of Experiment 1b, the results of Experiment
2 revealed a much smaller response delay. The second responses were slower, F(1,
35) = 60.15, p < 0.001, partial η2 = 0.63, in a way that now interacted with true
impact time, F(2.36, 82.62) = 31.74, p < 0.001, partial η2 = 0.47, due to a larger effect
for smaller impact times. Critically, the effect of response order was much smaller
than in Experiment 1b, F(1, 70) = 74.65, p < 0.001, partial η2 = 0.52. As can be
seen also in the Parallel Model’s predictions, some effect of response order is always
expected (by definition, the second response is slower than the first), but as Experiment
2 empirically shows, the effect is very small, averaging at 88 ms (CI for the intercept of
the first response: [181, 239] ms, second response: [514, 678] ms). Model fits confirmed
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that the Parallel model was preferred for tracking in perception: the Parallel Model
explained 97% of the variance in average responses, MSE = 0.001, while the Serial
Model explained 47% of the variance, MSE = 0.02.

Figure 4: Task and results of Experiment 2, tracking two objects in perception. Circles
and triangles indicate mean responses for different true impact time and response order
(’1st ball’ refers to the ball participants responded to first, and ’2nd ball’ to the ball
they responded to second), error bars show SEM, solid line shows best linear fit, shaded
area is 95% CI, and dotted line shows hypothetical perfect performance (where the
subjective impact time equals the true impact time), as reference

.

We stress that we do not take the results of Experiment 2 to definitively reflect
either parallel or serial tracking perception. While the results are more aligned with
the Parallel Model, that model refers to mental simulation, and it is possible that in
perception people are either carrying out the task in parallel, or through very rapid
serial switching. Whether it is one or the other does not matter to our central point
here: the results of Experiment 2 differed drastically from Experiment 1b, and show
that the serial pattern of Experiment 1b are not due to a bottleneck in response re-
quirements (which were identical in Experiment 2). Instead, the results likely reflect a
specific serial constraint on simulating the paths of imagined objects.

Experiment 3: Two objects in the imagination with grouping

The finding that people mentally simulate a single object at a time is striking when
considering the simplicity of the current task compared to real-world tasks, which
regularly involve many objects that can move in complex paths. Mental simulation
likely evolved to employ different hacks (16) that might overcome the serial bottleneck
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found here. One important strategy could leverage regularities in the environment,
such as Gestalt cues, which improve performance in perceptual tracking (25). It seems
reasonable to expect that if the motion paths of different objects are similar enough,
the objects will be grouped in imagination, allowing their physics to be advanced in
parallel. We tested this idea in Experiment 3, which used the same imagination task as
in Experiment 1b, but with three important modifications (see Fig. 5): only hyperbole
motion was used, the two balls always moved in the same direction (either to the left
or right, instead of toward each other), and velocity was held constant. This meant
that the visible motion sequence was identical for all items, to encourage participants
to group the two balls in each scene. Because the true impact time was determined
solely by a ball’s initial height, the setup also created a greater opportunity for using
heuristics instead of imagining the exact trajectory, which could be another way of
overcoming the single item capacity limit.

Figure 5: Task and results of Experiment 3, tracking two objects in the imagination
with strong grouping cues. Circles and triangles indicate mean responses for different
true impact time and response order (’1st ball’ refers to the ball participants responded
to first, and ’2nd ball’ to the ball they responded to second), error bars show SEM, solid
line shows best linear fit, shaded area is 95% CI, and dotted line shows hypothetical
perfect performance (where the subjective impact time equals the true impact time),
as reference
. The large difference found for tracking independent objects in the imagination was

diminished but not abolished.

Participants performed the task reasonably well, and the subjective impact times
were linearly modulated by true impact time, F(1.05, 36.8) = 36.84, p < 0.001, partial
η2 = 0.51; linear trend: t(105) = 10.51, p < 0.001. As can be seen in Figure 5
(right), the second responses were still much slower than the first, F(1, 35) = 62.65,
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p < 0.001, partial η2 = 0.64, in a way that interacted with true impact time, F(2.17,
75.84) = 4.1, p = 0.02, partial η2 = 0.1, this time because of a larger difference for
larger impact times. The average difference between the first and second responses
was 328 ms (CI for the intercept of the first response: [-461, 47] ms, second response:
[-670, 28] ms), which was smaller than in Experiment 1b, F(1, 70) = 17.13, p < 0.001,
partial η2 = 0.2, but larger than in Experiment 2, F(1, 70) = 31.17, p < 0.001, partial
η2 = 0.31. Accordingly, we found an intermediate pattern based on the fit between
participants’ data and our computation models: the Serial Model explained 69% of
the variance in responses, MSE = 0.04, and the Parallel Model explained 86% of the
variance, MSE = 0.02. The results suggest that grouping could relax the single item
bottleneck of imagination tracking somewhat, but not eliminate seriality completely,
even with identical motion sequences and an opportunity to use heuristics.

Discussion

Research spanning decades has demonstrated that people have signature capacity lim-
its when tracking visible objects. Here, we examined capacity limits when objects were
moving in the imagination. We found that the mind’s eye can only track a single
object at a time. More specifically, we found that people could reasonably unfold the
trajectory of a single object in the imagination (Experiment 1a), but that the addi-
tion of just one independent object substantially altered their responses (Experiment
1b), in line with the predictions of serial mental simulation. This Serial Model sug-
gests people first had to mentally advance one object up to some point, before going
back and advancing the second object. We did not observe the capacity bottleneck
when people tracked two objects in perception instead of imagination (Experiment 2),
further cementing the notion that the capacity limit is in mental simulation, not the
motor response or other limits further downstream. Additional experiments, models,
and analyses (see the Supplementary Information) showed that the serial gap is not
the result of noisy parallel simulation, lack of motivation, the need to simulate real-
istic physics, or disruption due to the unnatural freezing we used, and also that the
limitations hold at the individual participant level. Notably, the stable serial pattern
emerged despite of the well-known difficulty of observing serial costs in performance
(the difficulty of teasing apart serial and parallel patterns applies when a seemingly
parallel pattern could be interpreted as very rapid serial switching, but that is not the
case here). When we added strong grouping cues to the trajectory of the objects, we
found that the difference between the first and second response shrank, but was not
fully eliminated (Experiment 3). Taken together, our results suggest that mentally
simulating the movement of objects is a serial process.

The finding that people are able to track only a single object at a time in their
imagination is surprising, seeing as people can usually track a handful of items in direct
perception (though the exact number is affected by various factors, such as object speed
or spacing; e.g., 2; 8; 1; 5). If seeing things in the mind’s eye is supposed to be akin
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to seeing with one’s real eyes (26), our findings suggest it isn’t so. However, while
researchers do use the term ’track’ to include the following of hidden objects behind
occluders in perceptual tasks, it may be that this is an over-loaded term. ‘Tracking’ in
the imagination (or through occlusion) may be quite different than direct perceptual
tracking, as it is the mind itself that is moving the objects, rather than keeping on top of
objects that are being moved by external forces. Such a distinction aligns well with two
lines of work in attention and working memory. First, people’s ability to extrapolate
motion in perceptual tracking was recently suggested to have a capacity limit of only
one object (6), perhaps due to challenges of physical simulation (27). Second, updating
active representations was argued to depend on sequentially loading objects, one at a
time, into the ‘focus of attention’ (28). So, it may be that calculating an object’s future
motion (whether in direct perception as in MOT, or in imagination as in Imagined
Objects Tracking ) requires constantly updating the object’s representation in working
memory, and that relies on a serial process (for additional connections between physical
simulation and working memory, see 29). This is further strengthened by the present
finding that the serial pattern can be observed not only for items that freeze mid-
motion, but for items that undergo natural occlusion (Experiment S4). The capacity
limits we found in the imagination should then be taken to refer to the simulation
part that moves objects forward, rather than to a later process that re-processes the
imagined scene. Also, we did not control for eye movements, and it is possible that
people followed imagined trajectories with their eyes, which contributed to the single-
object bottleneck, although this only raises the question of why people could not shift
their eyes to track both imagined objects (as they do in perception). This is not a
limitation of the studies, but rather is in line with how people may carry out physical
predictions (see, e.g., 30; 31; 32), and is an interesting topic for future research.

Independent of capacity limits in perception, another reason why our findings are
surprising is that they contrast with subjective intuitions about internal scenes. Many
people report being able to imagine vividly dynamic mental scenes, and a single-object
capacity in simulation doesn’t align with that. Why then does it subjectively seem like
we can imagine vividly moving dynamic scenes? This is similar to the apparent conflict
between our intuition and other capacity limits – for example, in our everyday life, we
do not feel like we only have access to a tiny subset of all of the perceptual input, yet
decades of working memory research have shown that this is indeed the case, and under
naturalistic conditions we simply rely on other mechanisms for compensation, such as
long-term memory or scene scanning with saccades (for a review of similar ideas, see
33). Aside from general arguments regarding the unfaithful nature of introspection
(e.g., 34), our third study showed that grouping does ameliorate the serial effect
(though it doesn’t negate it). Our main effect relied on intentionally creating scenes in
which mental objects move independently of one another, but this may not be a typical
case. It is likely that many dynamic mental scenes (perhaps also those previously used
in intuitive physics research; e.g., 15; 35) rely on strong grouping and hierarchical
organization, such that the serial process need only update a hyper-parameter that
controls the motion of several objects at the same time. One such example would be
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mentally simulating the distance between items, instead of the location of each item
separately, an interesting idea that can be the target of future work.

Our studies focused on non-interacting objects to keep the findings clear and simple,
but objects in the mind can interact. A simple case-study of minimal interaction is
two objects moving along a plane at various speeds and angles, possibly about to
collide. In such a case it seems unlikely that people use a serial updating process that
fully moves first one object, then another, as no collisions would occur. In such a
case, perhaps people move forward one object for a limited number of steps S, then
switch to another object, and cycle back again. As detailed in the Supplementary
Information, such ‘interleaved’ serial simulation models did not explain the data in the
present studies, but they may be relevant for interaction/collision situations, possibly
with a dynamically set S. We plan to pursue such cases and models in future studies.

Another intriguing direction for future research concerns the information that peo-
ple do manage to simulate. Specifically, it is unclear whether people imagine the objects
along with all of their features, or are closer to a computerized physics engine that han-
dles only trajectories. The current results cannot offer an answer to this question, and
it is independent from the issue of the capacity limit of the simulation process. Yet,
past findings from MOT do point to a differential status of spatiotemporal information
and surface features at least in perceptual tracking. An extreme manifestation of this
is that while featural information can definitely aid tracking by allowing for more effi-
cient deployment of attentional resources (e.g., 36), when the tracked objects change
their features, people might entirely miss this (e.g., 37). On the other hand, MOT
findings suggest that people manage to rely on featural information for grouping (e.g.,
25), and so it would be interesting to test whether the single object capacity limit in
mental simulation might be relaxed not only by physically-relevant information (as the
identical motion paths used in Experiment 3), but also by presenting the objects in
the same color.

The capacity limits we found hold independently of the specific cognitive compu-
tations one assumes people use to advance objects in the mind’s eye. That said, we do
adhere to a mental simulation approach to intuitive physics (e.g., 14), and our compu-
tational models did assume that people track objects in the imagination by mentally
advancing them in step-by-step. This view contrasts with research that argues that
humans do not rely on mental simulation for intuitive physical judgments, and which
often points to people’s systematic mistakes and deviations from ground-truth physics
as evidence against simulation. While these two views are often portrayed in opposi-
tion, we see the current work as another brick in the bridge between the rich literature
on errors in physical judgments (e.g., 20; 38) and the mental game engine framework.
It is part of a general approach that uses game engines as inspiration for an overall men-
tal simulation account, but also draws on the shortcuts and workaround used in such
engines to save on time, memory, and overall computation (16). Such an approach has
found evidence for people’s use of systematic approximations in the representations of
bodies themselves (39), as well as people’s use of ‘partial simulation’, in which they do
not mentally simulate parts of the scene that are deemed irrelevant (21). Our present
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work shows another central way in which mental physics parts ways with real physics,
while still being overall consistent with a mental simulation account.

We set out to examine the capacity limits of the imagination. We found that even
in a simple situation the answer to ‘how many objects can the mind’s eye keep track of
at once?’ is ‘approximately one’. This might feel like discovering you’ve been tricked.
Like realizing that who you took to be a fantastic juggler is really only tossing and
bouncing a single ball. Still, knowing the trick makes you appreciate the act in a
different way: It’s poor juggling, but it’s a great trick.

Methods

Materials, data, code, and pre-registration protocols for all experiments, are available
in the following Open Science Framework repository: https://osf.io/wzt98/.

Participants

Research was approved by the Harvard University Ethics Committee (protocol IRB19-
1861). All participants provided informed consent. Participants were recruited online
(40) via Prolific (https://www.prolific.com). They were paid $1.6, and the median
time to complete the studies ranged between 5.5 and 6.5 minutes. Participation was
restricted to English-speaking US-based participants, with an approval rate of at least
95%, who did not perform any of the other tasks in the study (including pilot studies,
see below).

Given that Imagined Objects Tracking is a novel task, we ran pilot studies (with the
same tasks described in the pre-registration; data available at the OSF) to determine
the necessary sample size for both within- and between-subjects comparisons. The
smallest effect size found (an interaction of a within-subjects effect and experiment)
was partial η2 = 0.19, which requires N = 18 in each experiment for 95% power with
α = 0.05 (calculated using G*Power 3, 41). As a conservative estimate, we decided
to double this number in the full study. In the case of participants failing the com-
prehension questions and being excluded, we recruited additional participants to reach
36. All decisions of screening and re-recruitment were based on pre-registered criteria,
and took place without analyzing the data itself.

Participants were excluded from all analyses if they gave an incorrect answer to
at least one of the pre-task quiz questions, or (in experiments with 2 entities) if less
than 75% of their trials included two unique responses (i.e., two different response
keys). To ensure N = 36 participants in the final sample of each experiment, this
required recruiting N = 47, N = 71, N = 53, and N = 56 participants in Experiment
1a, 1b, 2, and 3, respectively. This was a comparable rate to similar past studies
of intuitive physics conducted online (e.g., 21; 19). The pre-task quiz and unique
responses threshold were the only criteria used for excluding participants, intentionally
focusing only on task comprehension rather than task performance. The final sample
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in Experiment 1a included 16 people who identified as female, 19 as male, and one
who preferred not to state (mean age 34.4); Experiment 1b included 18 people who
identified as female, 18 as male (mean age 38.6); Experiment 2 included 20 people who
identified as female, 16 as male (mean age 40.3); Experiment 3 included 22 people who
identified as female, 13 as male, and one who preferred not to state (mean age 37.0).

Stimuli and Procedure

We used an animated dynamic prediction task, similar to tasks previously used to study
intuitive physical reasoning (e.g. 21; 19). Participants in the Imagined Objects Tracking
task continue the trajectory of objects in their mind’s eye, and a measure of the tracked
motion is compared with the ground truth. In the case of the present experiments, the
measure is the time in which an event happened in imagination (a collision with the
ground), and the ground truth is extracted from the physics engine used to create stim-
uli. Demos of the tasks are available online: https://jatos.mindprobe.eu/publix/
Z8AtkMP8NZt (Experiment 1a), https://jatos.mindprobe.eu/publix/5iB7OvSVmHX
(Experiment 1b), https://jatos.mindprobe.eu/publix/1ygkkWoPJZm (Experiment
2), and https://jatos.mindprobe.eu/publix/4vh34OQB263(Experiment 3).

In all experiments, participants watched short 2D animations, created in the physics
engine Pymunk, that used the same simple setting: A green rectangle at the bottom
represented the ground, a narrow upright gray rectangle at the horizontal mid-line
represented a wall, and a light blue rectangle acted as background. Additionally, each
scene included 1 or 2 balls, rendered as yellow or purple disks. For scenes with 2 balls,
one was always to the left of the wall and the other was to the right, and the balls
differed in color. Scenes started with each ball having some initial height and velocity,
after which the balls moved according to simulated physics. We manipulated the initial
height and velocity to produce different trajectories that varied in their paths and the
time it took a ball to hit the ground, which was either 1.0, 1.2, 1.4, or 1.6 seconds from
the start of the animation.

The task in all experiments was to indicate when a ball touches the ground. Re-
sponse keys were spatially mapped to avoid confusion: ‘F’ for balls left of the wall, and
‘J’ for balls right of the wall. No feedback was given following button presses. Each
combination of true impact time and ball movement type was presented 8 times (4
on each side, randomized order), for a total of 64 experimental trials, presented in 2
blocks with a self-timed break between them.

Prior to the test trials, participants went through a pre-task phase, including in-
structions, practice trials, and a multiple-choice quiz. Each question in the quiz focused
on a different aspect of the task (the goal, when animations terminate, how to be most
accurate, and response mapping). If a participant failed to respond correctly to any of
the 4 quiz questions they were removed from further analysis. We next provide details
specific to the setup of each Experiment.
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Experiments 1a and 1b. Animations in the experimental phase paused after 0.5
sec (well before either ball touched the ground). Participants were asked to continue
the animation in their mind’s eye, and indicate when the balls in their imagination hit
the ground. The starting height and velocity of the balls were chosen such that neither
variable on its own determined the time it took for the ball to reach the ground,
to discourage the use of heuristics. During practice, participants completed 4 trials
with animations that ran all the way through (showing the impact of the ball with the
ground), in which they were asked to press a button when they saw the ball touching the
ground. This was followed by 4 trials with animations that paused early (not showing
the impact), as in the actual experiment. Animations in Experiment 1a showed a single
ball (see Fig. 2, left), and animations in Experiment 1b showed 2 balls (see Fig. 3, top
left)). In two-entity animations, one ball moved in a hyperbole up and to the center,
without hitting the wall (from shortest to longest true impact time, these balls started
either 100, 140, 60, or 180 pixels above the ground, and their vertical velocity was 95,
110, 216, or 180 pixels per second; their initial distance from the wall was 185 pixels,
and their horizontal velocity was 100 pixels per second), and the other ball moved
down and towards the wall on a sure collision path with it, but with the moment of
collision occurring after the animations paused (from shortest to longest true impact
time, these balls started either 280, 480, 400, or 440 pixels above the ground, and their
vertical velocity was 190, 200, 60, or 20 pixels per second; their initial distance from
the wall was 185 pixels, and their horizontal velocity was 280 pixels per second). The
color of the balls was matched to movement type within participants, but randomized
between participants. Each movement type was counterbalanced to appear on each
side of the wall on half of the trials. Single ball animations were created by removing
one of the balls from the 2-balls scenes. In Experiment 1a, each block included only
balls either left or right of the wall, with the order counterbalanced across participants.

Experiment 2. The stimuli were identical to Experiment 1b (2 entities), except that
the animations continued until participants gave 2 responses, including the moment
in which the balls touched the ground, and up to 4 seconds (see Fig. 4, left). So,
rather than continue the motion of objects in their imagination, participants were asked
to simply click on the appropriate button when they saw the relevant ball touch the
ground. Accordingly, the practice phase included 4 full-length animations, without
imagination trials.

Experiment 3. The task was identical to Experiment 1b (2 entities, animations
pause, participants continue the motion in their imagination). However, unlike Exp
1b, all balls moved in a hyperbole motion, in the same direction (left or right), and
velocity was kept constant (see Fig. 5, left). This was designed to create strong motion
grouping cues. The only variable that led to different true impact times was the starting
height of each ball. The color mapping (yellow/purple ball shown on left/right of wall)
was randomized between participants, but constant within participants.
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Analysis

Responses were aggregated across movement type, color, and location relative to the
wall. In Experiment 3, all motion paths were hyperbolic, and trials were aggregated
across movement direction (towards or away from the center). Individual trials were
rejected from further analysis if they did not include two unique responses, as this
prevents mapping each response to a specific ball. This rejection was not applied to
Experiment 1a, as it involved only one ball in each trial. Trials were also rejected if
responses were farther than 3 SDs from a participant’s mean. Taken together, these
criteria resulted in a rejection of less than a single trial on average in all experiments:
0.3, 0.3, 0.2, and 0.5 trials on average in Experiment 1a, 1b, 2, and 3, respectively
(note that the values reflect the number of rejected trials, not the percentage of rejected
trials, which was 0.5%, 0.5%, 0.3%, and 0.8%, respectively, all lower than 1% of rejected
trials).

Statistical Tests. In all experiments, we analyzed Subjective Impact Time using a
within-subject Analysis of Variance (ANOVA) with True Impact Time (1.0, 1.2, 1.4, or
1.6 sec; extracted from the physics engine) as a factor. In experiments that included 2
entities, we added Response Order (first vs. second key press) as a factor. We followed
the ANOVAs with a polynomial contrasts analysis, to test the linear trend of the True
Impact Time factor. As a measure of the effect of Response Order in experiments with
2 entities, we used 1,000 bootstrap samples to estimate the 95% confidence interval
(CI) on the intercept of linear fits, separately for the first and second responses. Our
pre-registered predictions were to find (1) a linear trend for all experiments, showing
that overall people are sensitive to ground truth physics; (2) a large delay between
responses in Experiment 1b, in line with a Serial model; (3) a reduced effect in Experi-
ment 2; and (4) an intermediate effect in Experiment 3. Because the effect of response
order was expected to be significant even for Experiment 2 (given that the second re-
sponse is by definition slower), we additionally compared the effect of Response Order
across experiments, using ANOVAs with Response Order as a within-subjects factor,
and Experiment as a between-subjects factor, and predicted significant interactions.
The Supplementary Informationfurther reports a post-hoc analysis focused on the vari-
ation in response times. Violations of sphericity were handled via Greenhouse-Geisser
corrections (42). All tests are two-tailed.

Parallel vs. Serial Mental Simulation Models. We created two mental simula-
tion models: Serial and Parallel. Both models relied on the same physics engine that
generated the stimuli to simulate the balls, starting from the animation’s end point and
until both balls collide with the ground. The models differed in how they advanced
the objects (see Fig. 1). The Parallel Model moves both balls simultaneously. The
Serial Model first picks one ball, advances its state until collision with the ground,
then repeats this process for the second ball. More formally, taking a scene to be a
tuple of objects ojt at time t, and each object to be a list maintaining the properties of
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the object at time t, and Φ to be the transition function that updates the properties
of objects according to physics, we have for the Parallel Model:

t = 0 : [o10, o
2
0] = G+ ξ,

t > 0 : [o1t+1, o
2
t+1] = [Φ(o1t ),Φ(o

2
t )],

where G is the ground-truth state of the objects as handed by perception, and ξ is
the perceptual noise. Following standard practice in modeling intuitive physics with
mental simulation (e.g., 14) we assume this is a two-dimensional Gaussian with mean
µ = (0, 0) and a symmetrical standard deviation SD = (σj, σj) for each object j.
We estimated an upper level for perceptual noise in an independent experiment and
used this value as our noise level, but importantly, our results are extremely robust
both below and above this chosen perceptual uncertainty setting, including both no-
noise situations, and far greater noise levels (for the full details, see the Supplementary
Information).

For the Serial Model, we have:

t = 0 : [o10, o
2
0] = G+ ξ,

t > 0 ∧ t < C : [o1t+1, o
2
t+1] = [Φ(o1t ), o

2
t ],

t > C : [o1t+1, o
2
t+1] = [o1t ,Φ(o

2
t )],

where the choice of simulating object o1 first is arbitrary, and C is the time at
which object o1 collides with the ground. While our main analysis takes the choice of
which object to simulate first to be random, we do expect that people are biased in
this selection, and indeed we found evidence that people use simple imperfect cues in
this selection (see the Supplementary Information).

Model Fitting. Because the models include perceptual uncertainty, we sampled 20
starting-states for each model, and averaged the results across runs. In addition to the
perceptual uncertainty parameter that was estimated through independent participant
data (Experiment S1), we assume that the model response can be fit to the human re-
sponse up to a simple linear transformation, meaningHuman Subjective Impact T ime =
a · (Model Predicted Impact T ime) + b. We fit the slope and intercept of this linear
transformation for each model separately, using the response data of the relevant ex-
periments that involve 2 objects. To compare model performance, we calculated each
model’s explained variance, as well as the resulting MSE. Model parameter fits were
done for the mean responses of all participants. In the Supplementary Information, we
additionally present model fits for individual data (still fitting overall a and b). All of
these different analyses agree with the results of the analysis we present in the main
text.
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The materials and data for all supplementary studies and analyses can be found in the
following Open Science Framework repository: https://osf.io/wzt98/.

Serial vs. Parallel Simulation at the Individual Level

Across the main experiments with two objects, we also examined individual performance.
Specifically, the models make different predictions regarding the delay in response between
the balls, as a function of the true impact time difference between them. In a Parallel
simulation, the delay should always closely follow the true difference, because both balls are
imagined simultaneously, and when the first one hits the ground, participants only have to
simulate what is left of the second ball’s motion, which matches the difference in impact time
between the balls. Therefore, the parallel prediction is a slope of 1 and an intercept of 0.
Conversely, a completely Serial simulation predicts a constant delay on average, i.e., a slope
close to 0, because after the first ball hits the ground, the second simulation has to start from
the beginning, meaning that the delay in simulation should only reflect the unseen duration
of of the second ball’s motion (which doesn’t depend on the first ball). With the same logic,
the intercept should be around 800 ms, which is the average duration of the unseen motion
of a ball (note that the order in which the balls actually hit the ground is unknown to the
model, and similarly for participants). Importantly, note that the average delay of 800ms
reflects an averaging of differential effects, rather than a fixed constant response across trials.
If the serial gap was due to a parallel simulation followed by a fixed gap in response due
to a down-the-line bottleneck (such as motor delay), we should expect a slope of 1 but an
intercept greater than 0.

The results of the individual participants’ data analyses are shown in Fig. S1. For easier
comparison across experiments, the raw results (Fig. S1, top) are complemented by distri-
butions of individual intercept and slope values from a linear fit to the raw data (Fig. S1,
bottom). In short, the individual-level analysis corroborates the findings in the main text.

In Experiment 1b, there is a larger-than-zero delay for all of the participants, averaging
at 711 ms. This is true even when the difference in true impact time is 0, meaning that the
balls would have hit the ground at exactly the same time if the scene would unfold all the
way through. Additionally, the flat delay pattern, meaning no modulation by the difference
between the balls, is highly robust at the individual level. Both of these findings provide
further support for a serial simulation, and demonstrate that the reported effects are not the
result of averaging over individual patterns that do not resemble the mean.

In Experiment 2, when objects are visible in perception, the intercept was close to 0 for
many participants (mean: 123 ms). Additionally, individual slopes are also much closer to 1
than in Experiment 1b. This pattern is in line with parallel processing, where participants
followed the two balls together.

In Experiment 3, where the mind’s eye had to track objects that moved in identical ways,
individual results show how participants could take advantage of the strong grouping cues,
or the chance to employ heuristics, and track the balls in their imagination in a way that
resembled the Parallel Model’s predictions. This was true both for the intercept (reflecting
the delay for balls with the same true impact time) which was close to 0 for many participants
(mean intercept was 230 ms), and for the slope, which was close to 1 for many participants.
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Figure S1: Individual response analysis. Response delay is shown as a function of the true
difference in impact time between the two balls. Top: raw individual (small markers) and
average (large markers) results in Experiments 1b, 2, and 3. Bottom: distributions of the
intercept (left) and slope (right) values across experiments. Dotted lines show the predictions
of the Parallel and Serial Models.

Interestingly, there was great variability in leveraging the grouping cues and/or heuristics,
which highlights an interesting direction for future studies on how people overcome capacity
limits in mental simulation.

Response Variation Analysis

Our main, pre-registered, analysis focused on average response time as a measure of subjec-
tive impact time. Another interesting angle to examine the data from concerns the variation
in participants’ responses. Specifically, if simulation indeed happens serially, we can expect
the second responses to have more variation than the first responses, because by the time
participants get to them more noise accumulates. This is similar to how longer simulations
should also be noisier, and so with larger values of the true impact time, the responses
should also have larger variation. Notably, not all of these effects can be attributed to
the simulation, as some noise accumulates likely due to response and/or memory processes.
Nevertheless, for completeness we also report post-hoc analysis of the individual level SD of
responses across experiments.
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In Experiment 1b, we found that response time SDs were larger (F(1, 35) = 9.11, p
= 0.005, partial η2 = 0.21) for the second response (95% CI: [374, 563]) than for the first
response (95% CI: [286, 474]), and that SDs grew as a function of the true impact time
(F(2.41, 84.37) = 4.93, p = 0.006, partial η2 = 0.12), and these two factors did not interact
(F < 1). This is in line with a serial simulation where noise accumulates not only with the
duration of the simulations (as reflected by the true impact time), but also with the order
in which these simulations are performed.

In Experiment 2, response time SDs were again larger (F(1, 35) = 35.12, p < 0.001,
partial η2 = 0.5) for the second response (95% CI: [99, 130]) than for the first one (95% CI:
[69, 101]), but were not affected by the true impact time (F < 1), and these two factors again
did not interact (F(2.72, 95.22) = 1.1, p = 0.35, partial η2 = 0.03). Compared to Experiment
1b, the effect of true impact time was smaller (F(2.56, 179.63) = 4.94, p = 0.004, partial
η2 = 0.07), and that of response order was marginally smaller (F(1, 70) = 3.84, p = 0.054,
partial η2 = 0.05). Overall, the pattern is in line with the idea that here participants did
not have to simulate the trajectories but only track them (hence the lack of an effect of the
true impact time), and that at least some of the effect of response order on the variation is
due to noise accumulated from the response process.

In Experiment 3, the results were in line with those of Experiment 1b, with larger SDs
(F(1, 35) = 10.54, p = 0.003, partial η2 = 0.23) for the second response (95% CI: [312, 497])
than for the first one (95% CI: [252, 437]), larger SDs with larger true impact times (F(2.07,
72.38) = 8.78, p < 0.001, partial η2 = 0.2), and no interaction between these two factors (F
< 1). Compared with Experiment 1b, the effect of response order was similar (F < 1), and
the effect of true impact time was larger (F(2.41, 168.79) = 3.43, p = 0.027, partial η2 =
0.05), mainly due to smaller SDs for shorter true impact times in Experiment 3.

Another interesting question is whether the difference in response times was also more
varied as the true difference grew larger. Here, the Serial model’s predictions are less clear
cut: Because the second simulation starts from scratch, the model is not influenced by the
difference in impact time itself (as can be seen in the previous section), but the different
delays do represent different mixture of true impact times, and so with the larger delays
the noise might be larger because of a larger proportion of long simulations. Therefore we
report the results of this analysis with caution. We found marginal evidence for an effect of
the true impact time difference on the SD of the response delay in Experiment 1b (F(1.67,
58.64) = 2.53, p = 0.097, partial η2 = 0.07), no effect in Experiment 2 (F(2.24, 78.53) = 1.1,
p = 0.35, partial η2 = 0.03), and a strong effect in Experiment 3 (F(2.38, 83.29) = 21.66, p
< 0.001, partial η2 = 0.38).

To summarize, the results of the SD analyses are generally in line with the predictions
of the Serial model. We stress that these tests were not pre-registered and we treat them as
exploratory. Questions regarding differential variation in responses and the potential sources
of noise that give rise to it remain an interesting direction for future research.

Experiment S1: Noise Estimation

Many current intuitive physics models based on mental simulation assume the presence of
noise, due to perceptual or dynamic uncertainty (1). While the perceptual noise parameter
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was not our main focus, we note that the only way the Parallel Model can create any
systematic difference between the response times is through the perceptual noise. So, it was
important for us to examine whether a seemingly serial pattern of responses (a large difference
between the first and second responses) is the result of a very noisy parallel simulation. To
obtain an estimate of the perceptual noise in our main task, we ran a separate experiment
using a modified paradigm with a group of participants independent from our main studies.
We showed participants the same animations as those used in our main task, except that
instead of freezing, the objects in the animation disappeared completely. Participants were
asked to click on the location where the objects were last seen.

Method

We used the same stimuli as in Experiment 1b (two balls in the imagination) with a slight
modification: after 500 ms, instead of freezing, the balls disappeared from view. Participants
were asked to use their cursor to click on the location where the balls were right before they
disappeared (for a demo, see https://jatos.mindprobe.eu/publix/6m6OKyshQHx).

Participants completed 64 trials, as in the main task of Experiment 1b. Also similar
to Experiment 1b, participants went through a pre-task phase, which included instructions,
practice trials, and a multiple-choice quiz. We collected responses from 25 Prolific partici-
pants, and excluded participants who failed to respond correctly to any of the 3 quiz questions
(one participant), or did not provide at two mouse clicks on each trial (one participant).

Results

We were interested in the spatial spread of people’s estimations, and examined the SD of
their responses. For this, we aggregated the responses from all participants and all scenarios,
and re-aligned all of the trials relative to one example scene. We then calculated the average
location of responses for each ball, and the SD of responses relative to this average. We
averaged across the two balls to reach one SD value, and found that the SD of responses
was 30.6 pixels, corresponding to roughly 1.5x the radius of the balls (see Figure S2 for an
illustration). This is the value we used in the main text as the SD of the perceptual noise
distribution. It is likely that this overall uncertainty is mildly affected by various situation-
specific sub-factors like velocity and position, but as discussed below, our findings are robust
to the noise parameter, and so we do not explore these differences as they do not matter to
our main point.

We note that the estimate of 31 pixels is an upper bound on the perceptual uncertainty
in our main task, because in the actual main task the balls remained visible throughout,
whereas in the noise estimation task participants did not see the balls when they responded.
Importantly, greater perceptual uncertainty biases the results in favor of the Parallel Model,
and so to the degree that this upper-limit perceptual noise is different from people’s actual
(smaller) perceptual noise in the main task, this would serve only to strengthen the support
in favor of a Serial model. So, the Serial Model is much preferred to a Parallel Model under
the upper-bound noise estimation used in the main text, and it is even more preferred under
the lower uncertainty which likely existed in the main task (and see also the noise analyses
below).
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Figure S2: Noise estimation experiment (S1). A schematic view of the scene (axes show
pixels), with all of the trials collapsed, and different scenes aligned relative to one example
scene. Each dot is one response (aligned relative to the example scene). The first responses
(within a given trial) are shown in purple, and the second responses (within a given trial)
are in yellow. The solid black circles show the true final locations of the balls (with the size
being equal to the balls’ size), and the dashed circles show the SD of participants’ responses
(31 pixels), centered around the average response location for each ball.

Experiment S2: Two Objects in Minimally-Physical Sce-

narios

Our main experiments included a physical simulation task, where the to-be-imagined objects
moved under gravity and could undergo collisions with a separating barrier. One might worry
that the serial pattern we found was not a characteristic of mental simulation generally, but
instead originates specifically from the physical reasoning involved in predicting the trajec-
tories of the given task, and as opposed to the simplified stimuli used in many perceptual
tracking tasks. As argued in the main text, we view a physically-realistic task as much more
likely to allow for efficient processing, given the rich experience people have in everyday life
with objects acting under gravity and colliding. However, to examine the robustness and
generalization of our findings, we ran another experiment that involved mentally simulating
objects that are moving along straight lines, in constant speed, with no collisions or gravity
– as is commonly used in Multiple Object Tracking.
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Figure S3: Task and results of Experiment S2, tracking two objects in imagination, with
minimally-physical trajectories. Circles and triangles indicate mean responses for different
true impact time and response order (’1st ball’ refers to the ball participants responded to
first, and ’2nd ball’ to the ball they responded to second), error bars show SEM, solid line
shows best linear fit, shaded area is 95% CI, and dotted line shows hypothetical perfect
performance (where the subjective impact time equals the true impact time), as reference.

Method

The task was similar overall to Experiment 1b: scenes showed two objects pausing mid-
motion, and the task was to continue trajectories in the mind’s eye and indicate when each
object collides with a specific area. The difference was that the animations and description
given to participants were altered in the following ways (see Figure S3, left; for a demo, see
https://jatos.mindprobe.eu/publix/GX5Rdu8q3VP): We created videos using the same
physics engine as before, but with gravity turned off. The scene background was gray, with
two black rectangles spanning the height of the video placed on the right and left edges.
Two colored disks were presented roughly in the center of the screen, and moved in straight
lines and with a constant speed towards the right and left sides of the scene. Participants
were asked to press the left side key when the left side disk collides with the left side wall,
and the right side key for the right side disk and right side wall.

As in the main experiments (and following the pre-registered protocol), we recruited
participants until we had 36 participants that passed the quiz and had a sufficient proportion
of unique responses (see the main text), which required N = 69. We analyzed the results in
the same way as in the main experiments.

Results

As can be seen in Figure S3 (right), tracking two objects in imagination using minimally-
physical stimuli that are similar to conventional perceptual tracking tasks replicate the serial
pattern of the main studies. Participants’ response were linearly modulated by the true

7

https://jatos.mindprobe.eu/publix/GX5Rdu8q3VP


impact time, F(1.41, 49.40) = 26.44, p < 0.001, partial η2 = 0.43; linear trend: t(105) =
8.79, p < 0.001. However, as in the more physical experiments, the second response happened
much later than the first, F(1, 35) = 132.56, p < 0.001, partial η2 = 0.79. Comparing the
results to Experiment 1b, we found a significant interaction of Experiment with Response
Order, F(1, 70) = 8.92, p = 0.004, partial η2 = 0.11, driven by a larger effect in Experiment
1b. In Experiment S2, the average delay was 423 ms (CI for the intercept of the first
response: [442, 880] ms, second response: [1,075, 1,532] ms), and the interaction between
response order and the true impact time was not significant, F(2.37, 83.15) = 2.07, p =
0.12). In terms of fits, the Serial model explained 98% of the variance in responses, MSE =
0.001, while the Parallel model explained 27% of the variance, MSE = 0.04.

These findings demonstrate that our results are not due to the specific physical require-
ments imposed by the main task. Mentally simulating the movement of items appears to
happen on a single-item basis in both complex and simple stimuli.

Experiment S3: Imagination Tracking with Increased

Motivation

In our main tasks, we were interested in people’s natural behavior without pushing them
toward a specific tactic. As a result, it is in principle possible that participants adopted a
serial simulation mode as a strategic choice, and that parallel simulation is possible when
people ’try harder’. The main text presents several reasons to doubt the idea that our partic-
ipants chose serial simulation to save on resources (and see also the individual performance
analysis that shows the serial pattern is not due to only a few participants, instead being an
extremely robust finding at the individual level). Here, we describe an additional experiment
where we tried motivating participants to maximize their performance for monetary reward,
to test whether this incentive can push their responses towards parallel simulation.

Method

The task and stimuli were identical to Experiment 1b, with the only difference being a mon-
etary bonus (see Figure S4, left; for a demo, see https://jatos.mindprobe.eu/publix/

0MaFIruJAbS). During the instructions phase, we told participants that the closer their
responses are to the true impact times, the higher they will score towards an additional
monetary bonus to a maximum of $1 (with the baseline, non-bonus payment being $1.6).
We reminded participants of the bonus throughout the experiment, asking them to perform
the task as precisely as they can in order to win the highest bonus. Because we only care
about potential changes in overall performance as a function of motivation, after finishing
the experiment, all of the participants were informed that they will receive a bonus of $.85.
To prevent participants learning various heuristics, we did not provide feedback throughout
the task.

As in the main experiments (and following the pre-registered protocol), we recruited
participants until we had 36 participants that passed the quiz and had a sufficient proportion
of unique responses (see the main text), which required N = 55. We analyzed the results in
the same way as in the main experiments.
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Figure S4: Task and results of Experiment S3, tracking two objects in imagination, with
monetary bonus. Circles and triangles indicate mean responses for different true impact time
and response order (’1st ball’ refers to the ball participants responded to first, and ’2nd ball’
to the ball they responded to second), error bars show SEM, solid line shows best linear fit,
shaded area is 95% CI, and dotted line shows hypothetical perfect performance (where the
subjective impact time equals the true impact time), as reference.

Results

Motivating participants to perform as accurately as possible did not change the pattern of
responses. As shown in Figure S4, right, we closely replicated the results of Experiment
1b. Participants’ response were linearly modulated by the true impact time, F(1.36, 47.64)
= 65.25, p < 0.001, partial η2 = 0.65; linear trend: t(105) = 13.96, p < 0.001. However,
as in Experiment 1b, the second response happened much later than the first, F(1, 35) =
235.39, p < 0.001, partial η2 = 0.87. Comparing the results to Experiment 1b, we found no
interaction of Experiment with the Response Order effect, F ¡ 1, suggesting highly similar
patterns of results. In Experiment S3, the average delay was 651 ms (CI for the intercept
of the first response: [285, 682] ms, second response: [797, 1,298] ms), and the interaction
between response order and the true impact time was not significant, F ¡ 1. In terms of
fits, the Serial model explained 99% of the variance in responses, MSE = 0.0007, while the
Parallel model explained 30% of the variance, MSE = 0.09.

These results suggest the serial capacity limit is strict, in that people cannot simply adjust
their imagination to simulate independent objects in parallel through effort and motivation.

section*Experiment S4: Imagination Tracking with Occlusion
In our main tasks, the items freeze mid-motion and participants are asked to complete

their movement in the imagination. This obviously deviates from how scenes naturally
unfold in the real world. Could it be that the serial pattern we observed does not reflect a
capacity limit on mental simulation per se, but is the result of some disruption to everyday
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Figure S5: Task and results of Experiment S4, tracking two objects in imagination, with
occlusion. Circles and triangles indicate mean responses for different true impact time and
response order (’1st ball’ refers to the ball participants responded to first, and ’2nd ball’ to
the ball they responded to second), error bars show SEM, solid line shows best linear fit,
shaded area is 95% CI, and dotted line shows hypothetical perfect performance (where the
subjective impact time equals the true impact time), as reference.

spatiotemporal tracking (see 2)? To test this, we conducted an additional experiment where
the items gradually disappeared behind an occluder, instead of freezing.

Method

The task and stimuli were identical to Experiment 1b, except as stated below. First, the
balls did not freeze but continued to move. Second, a gray rectangle occluded much of the
bottom part of the scene (Figure S5, left; for a demo, see https://jatos.mindprobe.eu/

publix/Brm7G1m7ogT). The dimensions of the occluder on each trial were chosen so that the
balls disappeared behind it after 500 ms of movement. It spanned vertically from the top of
the ground to the bottom point the ball that collides with the wall reached at 500 ms, and
horizontally from the side of the video on the colliding ball’s side (to hide how it rolls on the
ground post-hit) to the innermost point the hyperbole ball reached at 500 ms. Third, the
wall was presented in black instead of gray so it is salient against the gray ’screen’. Fourth,
the instructions, example trials, and quiz questions were updated to explain the occlusion.
Participants first saw unoccluded trials during practice, and then occluded trials.

As in the main experiments (and following the pre-registered protocol), we recruited
participants until we had 36 participants that passed the quiz and had a sufficient proportion
of unique responses (see the main text), which required N = 58. We analyzed the results in
the same way as in the main experiments.
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Results

As can bee seen in Figure S5, right, mentally simulating items that disappear in a natural
way behind an occluder still produced a serial pattern, similarly to the results of Experiment
1b where the items froze mid-motion. Participants’ responses were linearly modulated by
the true impact time, F(2.02, 70.85) = 158.91, p < 0.001, partial η2 = 0.82; linear trend:
t(105) = 21.43, p < 0.001. However, as in the experiments that involved items freezing, the
second response happened much later than the first, F(1, 35) = 141.28, p < 0.001, partial
η2 = 0.8. Comparing the results to Experiment 1b, we found a significant interaction of
Experiment with Response Order, F(1, 70) = 15.65, p < 0.001, partial η2 = 0.18, driven by
a larger effect in Experiment 1b. In Experiment S4, the average delay was 364 ms (CI for
the intercept of the first response: [226, 509] ms, second response: [759, 1,097] ms), and the
interaction between response order and the true impact time was significant, F(2.36, 82.64)
= 4.78, p = 0.007. Examining model fits showed that the Serial model explained 96% of the
variance in responses, MSE = 0.002, while the Parallel model explained 46% of the variance,
MSE = 0.03.

These results suggest the serial capacity limit does not simply reflect the unnatural
freezing we used in the main experiments, and can be observed also for items that are
simply occluded. Occlusion did mitigate the serial effect somewhat, and this might reflect
any of a number of factors, such as the greater spatial and temporal predictability regarding
the switch from perception to imagination, or the greater familiarity of the more ecological
scenarios. Indeed, this might point to interesting strategies people employ in the real world
to handle a complex world with such a limited capacity to mentally simulate events. Given
how common occlusion is in the real world, the fact we could replicate the Serial pattern in
Experiment S4 suggests that the single object bottleneck arises under naturalistic simulation
conditions as well, corroborating the importance of the present findings.

Testing the Effect of Noise in the Models

The models in the main text use a perceptual noise parameter that we independently es-
timated in the task described in the previous section. As mentioned, the perceptual noise
estimated using this task is an upper limit on the expected noise in the main task. In ad-
dition to this, we also carried out a systematic exploration of perceptual noise levels. We
created variants of our Serial and Parallel models, by varying a noise parameter D, equiva-
lent to the SD of a symmetric two-dimensional Gaussian distribution centered around each
ball’s location at the beginning of the simulation, and measured in units corresponding to
the radius of the balls. Our analysis varied this parameter from D = 0 (no perceptual noise),
through D = 1.5 (the upper bound found through human participants), and up to D = 10
(ten times the radius of the balls, or 200 pixels).

As the noise increases, the fit of the Parallel Model gradually improves, because the
noise randomly makes one ball reach the ground later and produces a delay between the
responses. Still, the Serial Model outperforms the Parallel Model for nearly all parameter
values considered, including vastly outperforming it in the relevant ranges as estimated by
participant uncertainty (see the Table). The only parameter setting in which the Parallel
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Table 1: Model fits in terms of explained variance (R2) and MSE for different noise levels,
and percentage of invalid location trials (i.e., where the noise moved a ball across the wall
or placed it outside the scene borders.). For the model fits, the winner model is in bold.

% Invalid Locations Parallel Model Fit Serial Model Fit
Noise SD (D) Parallel Serial R MSE R MSE
0 0.00 0.00 0.12 0.103 0.97 0.004
0.5 0.00 0.00 0.13 0.101 0.96 0.004
1 0.01 0.02 0.15 0.100 0.96 0.004
1.5 0.03 0.08 0.21 0.093 0.97 0.004
2 0.12 0.13 0.31 0.080 0.96 0.004
2.5 0.20 0.21 0.31 0.081 0.96 0.005
3 0.26 0.26 0.44 0.066 0.97 0.004
3.5 0.30 0.33 0.51 0.057 0.97 0.004
4 0.34 0.33 0.54 0.053 0.95 0.006
4.5 0.39 0.41 0.68 0.037 0.95 0.006
5 0.49 0.45 0.71 0.033 0.95 0.006
5.5 0.52 0.46 0.77 0.027 0.97 0.004
6 0.52 0.49 0.79 0.025 0.98 0.003
6.5 0.52 0.56 0.84 0.018 0.96 0.004
7 0.64 0.57 0.91 0.010 0.95 0.005
7.5 0.62 0.60 0.75 0.030 0.92 0.009
8 0.70 0.62 0.94 0.007 0.94 0.007
8.5 0.71 0.72 0.90 0.011 0.95 0.006
9 0.68 0.72 0.97 0.004 0.94 0.007
9.5 0.79 0.74 0.84 0.019 0.97 0.003
10 0.78 0.76 0.82 0.022 0.90 0.012

Model outperforms the Serial model (D = 9, R2 = 0.97 vs. R2 = 0.94) is at a noise level
roughly 6 times larger than the upper bound we found in a task where the balls disappear,
is absurdly large (a ball of this size would take up a third of the scene), and produces absurd
location values: over two thirds of the noisy locations for the balls either cross the wall in
the scene, or are beyond the scene’s borders altogether.

We also conducted an analysis that specifically targets the influence of noise on model
predictions in a more fine-grained manner. We calculated the unique contribution of the
noise in the simulation by subtracting the true difference in the true impact times ∆gt from
the actual found response time difference ∆h. In the absence of perceptual noise, the Parallel
Model predicts values of 0 regardless of the true difference in impact time (all of the delay
comes from the actual difference ∆gt between the balls). By contrast, the Serial Model
predicts a constant delay of 800 ms between the responses (because the second simulation
starts anew once the first ball hits, and 800 was the average duration of the remaining
movement across the different scenarios). So, with larger differences between impact times
a larger value is subtracted and the trend declines linearly.

The results of applying this analysis to the noisy variants of the Parallel Model appear in
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Figure S6: The effect of noise on the Parallel Model predictions. The top row shows, for
comparison, participants’ results in Experiment 1b, and the predictions of the noiseless
Serial and Parallel Models. As the noise increases, the Parallel model predicts a larger delay
between the balls, but this effect is more pronounced when the true difference between them
is small (when all of the difference in impact time is attributed to noise) then when it is
large.

Figure S6: As the noise grows, the Parallel Model begins to predict a decreasing trend, but
it is too small while the balls have a large difference between them, to the point that some
of the effect becomes negative. Participant behavior in Experiment 1b closely followed the
Serial Model’s predictions not only for the overall pattern, but also for this specific effect.

In summary, the more fine-grained noise-analysis shows that the main finding (Serial
simulation is a better explanation of people’s behavior than Parallel simulation) holds for a
wide range of noise values, and matches the qualitative trends as well.

Interleaved Serial Models

The Serial Model we focused on in the main text unfolds the complete trajectory of one
object before it starts unfolding the trajectory of the second object. But there is a more
nuanced possibility: perhaps people interleave the mental simulation of two objects, such
that first an object is moved forward for S steps, then the simulation switches to the other
object for an additional S steps, then the simulation cycles back to the first object, and so
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Figure S7: Model predictions in Experiment 1b (tracking two balls in imagination), for
different values of the switching parameter. Circles and triangles indicate mean responses
for different true impact time and response order, error bars show SEM, colored lines show
best linear fit, and shaded area is 95% CI.

on. At first glance, such a model might seem to lie in the middle of the Serial and Parallel
Models, such that a value of S = 1 is equivalent to the Parallel Model, and as S grows we
approach the Serial Model of the main text. As the analysis below shows, this is not the
case.

To test the influence of interleaving, we created 5 additional models, each with a different
S parameter: switching every 100, 200, 400, 800 , or 1600 ms of simulation. Setting S = 1600
is roughly equivalent to the Serial Model considered in the main text.

The results, shown in Figure S7, reveal a pattern that might be unintuitive at first. As
the interleaving window becomes smaller, the first and second responses become more similar
to each other. But, this does not reflect a faster second response (as in the Parallel Model)
but a slower first response. This is because the first ball only manages to hit the ground
after several switches. Such a prediction does not line up with our data, in which we found
that the first response in Experiment 1b (2-balls imagination tracking) is highly similar to
the first-and-only response in Experiment 1a (1-ball imagination tracking).

Beyond this, with small interleaving windows (smaller S), we find that larger values of
the true impact times can lead to average second responses that are faster than the average
of first responses. This seemingly paradoxical effect simply reflects an uneven distribution
of responses across the true impact times. To see this, consider a ball B1 with the longest
true impact time of 1600 ms, and a short interleaving window (small S): if the second ball
B2 has a shorter true impact time than B1, it will almost certainly reach the ground first.
At that point, the simulation is ’released’ to move only B1. Such a situation includes most
of the scenarios. As the difference between the true impact times of the two balls becomes
smaller, the moment when the ball B1 ‘breaks off’ happens later, producing a crossing point
in the figures. This ‘crossing effect’ is important for two reasons: First, even in the limit of
minimal S, this effect is not produced by the Parallel Model, showing that an interleaved
model with maximal switching is not the same as the Parallel Model. Second, this effect
is not found in participant data, suggesting again that the Serial Model considered in the
paper (with maximal S) more closely matches human behavior.

We believe that an interleaved Serial Model may be relevant for situations beyond the
main task considered in the paper, in which two or more objects may interact with one
another (e.g. in the case of collisions). However, given that the interleaved model makes the
two qualitative predictions detailed above, two predictions that do not line up with the full
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Serial Model of the main text, we find there is no evidence for the interleaved model in our
data.

Supplemental Model Fitting

In the main text, we present the results of one type of model comparison for the Serial vs.
Parallel Tracking Models: linear fits between Model-predicted impact times, and the average
subjective impact time given by participants. Here, we detail two additional analyses. To
summarize up front, the results of both of these separate approaches agree: Participant
behavior in Experiment 1b (two separate objects in imagination) is better explained by the
full Serial model, while participant behavior in Experiment 3 (two objects in imagination
with strong grouping) lies somewhere between the the Serial and Parallel models.

Noisy simulation, individual data fit. This analysis fits the noisy simulation models
to the individual data, aggregated across all participants, and still fitting overall a and b
parameters of a linear fit. The results in Experiment 1b were still in line with serial simulation
in imagination: the Serial Model explained 24% of the variance in responses, MSE = 0.36,
while the Parallel Model explained 5% of the variance, MSE = 0.45. Adding grouping cues
(Experiment 3) pushed the results towards parallel simulation: the Serial Model explained
10% of the variance in responses, MSE = 0.81, and the Parallel Model explained 12% of the
variance, MSE = 0.79.

Noiseless model fits. As noted in the fine-grained noise-analysis above, the Serial Model
is preferred to the Parallel Model in condition ofD = 0 as well. To detail this a bit further, for
Experiment 1b (two objects in imagination) the Serial Model explained 97% of the variance
in responses, MSE = 0.004, and the Parallel Model explained 11% of the variance, MSE =
0.1. Thus, the Serial Model does not need any level of noise to account for participants’
performance. In addition to that analysis, we considered noiseless models for Experiment 3
(two objects in imagination with grouping cues), and found that the grouping cues pushed
the results more towards parallel simulation: the Serial Model now explained 69% of the
variance in responses, MSE = 0.04, and the Parallel Model explained 78% of the variance,
MSE = 0.028.

Response Order Accuracy

Our Serial Model assumed that the choice of the first object to simulate is arbitrary and
selects it at random. However, if serial simulation is an accurate description of human
imagination, it is likely that people’s object selection is biased in some way. While this was
not the main focus of our studies, we considered this possibility by analyzing the frequency
at which participants responded in the correct order, for scenarios in which the balls differed
in their true impact time. In a parallel simulation, the chance of responding in the correct
order should be close to 100%. In a serial simulation, if people respond in the correct order
100% of the time, it means they know ahead of time which ball would hit the ground first
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Figure S8: Percentage of trials where participant responded in the correct order, by experi-
ment: raw individual (small markers) and average (large markers) results.

(presumably through a process other than simulation). If people respond in the correct order
50% of the times, it would suggest that they pick the first ball to simulate at random. An
intermediate value would suggest that people have some imperfect heuristic for picking the
first ball to simulate (e.g., based on height or velocity). This last option would also be in
line with recent work on the combination of heuristics and simulation (e.g., 3).

So, we can use the accuracy of order of collision as a metric for whether people’s choice
of first object is biased. Figure S8 shows the results of such an analysis of order accuracy,
for the two experiments that included two objects in the imagination. In Experiment 1b,
the average order accuracy was 68% (SEM=9%), suggesting that people neither choose the
first ball perfectly nor at random, but likely use some imperfect heuristic. In Experiment 3,
the average order accuracy was 97% (SEM=3%), suggesting that people can use the height
of the balls as a useful heuristic, which indeed in this situation fully determined the order in
which the balls landed on the ground.

Individual Performance with a Single Object

In Experiment 1a, when people tracked the trajectory of a single object in imagination, we
found that responses were linearly modulated by the true impact time, suggesting a high
sensitivity to ground truth physics. Here, we show that this finding is not an artifact of
averaging: it is found in the individual responses of almost all participants, as Figure S9
shows. This demonstrates that people are tuned to even subtle adjustments of physical
properties, as the differences between different impact times were as small as 200 ms.
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Figure S9: Individual performance in Experiment 1a, with a single object in imagination, by
the True Impact Time: raw individual (small markers) and average (large markers) results.
The dotted black line shows hypothetical perfect performance (where the subjective impact
time equals the true impact time), as reference.
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