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Physics versus graphics as an organizing 
dichotomy in cognition 
Highlights 
Many current cognitive models of mental 
simulation draw inspiration from game 
engines – engineering tools that are 
used to create and transform scenes 
for animations and video games in an ap-
proximate and efficient way. 

A central division of computational labor 
in modern game engines differentiates 
between physical simulation and graphi-
cal rendering, and this may have a cogni-
tive equivalent. 
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People build world models that simulate the dynamics of the real world. They do 
so in engineered systems for the purposes of scientific understanding or recrea-
tion, as well as in intuitive reasoning to predict and explain the environment. On 
the basis of a major split in the simulation of real-time dynamics in engineered 
systems, we argue that people's intuitive mental simulation includes a basic 
split between physical simulation and graphical rendering. We first show how 
the separation between physics and graphics relies on a natural division of 
labor in any cognitive system. We then use the physics/graphics distinction to 
tie together and explain a range of classic and recent findings across different 
domains in cognitive science and neuroscience, including aphantasia and imag-
ery, different visual streams, and object tracking. 
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Physical simulation is central to cogni-
tion broadly, and may support most 
types of mental imagery as well as ob-
ject tracking. 

Aphantasia, the apparent lack of volun-
tary imagery, is a topic of intense current 
focus in cognitive science and philoso-
phy, and there are debates about 
whether it indicates a true lack of visual 
representations; it may be or can be ex-
plained by 'broken rendering'.
Simulations in the mind and in machines 
It is a classic view in cognitive science that people use mental simulation to understand the world 
[1,2]. In recent years, this proposal has been the target of major renewed focus. It has acquired 
new layers and new bruisings, specifically with regards to one of the pillars of common sense – in-
tuitive physical reasoning (e.g., [3–6]). 

In the decades during which mental simulation was debated in cognitive science, other areas 
of research developed better and better simulations of reality. For present purposes, the 
most relevant advances in simulation have been in computer graphics. These simulation 
tools form the backbone of modern games and animations. They are concerned with 
constructing and manipulating realistic-enough worlds, under heavy constraints of time, 
memory, and computation. 

The computational constraints on approximate world simulations make engineered tools a 
model system for how mental simulations work cognitively and neurally [5,7–9]. But a 
foundational principle of engineered simulations has not yet been turned into a central co-
herent principle in the mental simulation proposal. This is the basic dichotomy between 
physical simulation and visual rendering – between geometry and graphics. We argue 
here for a cognitive version of this division. If true, this split would form a major organizing 
principle in the human brain, with separate processes for physical simulation and graphical 
rendering. 

In what follows, we first briefly present the idea of engineered game engines and their application 
to cognitive science. We next describe specifically the proposed dichotomy between physical 
simulation and graphical rendering. We then show how this distinction applies to major current 
debates and sheds light on a diverse set of important recent findings and puzzles across mental 
imagery, neuroscience, and object tracking. 
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Background: game engines and intuitive physics 
Game engines are a set of specialized interacting software modules that support the develop-
ment of animations and games [10,11]. The particular modules and how they move, draw, and 
show entities vary, but they are all concerned with creating scenes, moving entities using dynam-
ics, and displaying how those entities look using graphics. Most simulation engines contain a 
'physics engine' that is dedicated to updating a scene and running it forward. To save on com-
putational resources, physics engines do not fully solve the equations that govern the equivalent 
scene in reality. Instead, they rely on simplified representations of objects and dynamics, as well 
as on specialized but principled approximations, shortcuts, and workarounds. 

The efficient and approximate nature of physics engines has drawn the attention of many cognitive 
researchers who study how humans intuitively reason about, predict, and explain the behavior of 
everyday objects. This intuitive physics is a major part of commonsense reasoning [12], is early-de-
veloping or possibly innate, and is likely shared across cultures and with non-human animals [7,13]. 
Although people are adept at reasoning about and interacting with everyday dynamics [3], empir-
ical work has also shown that people make systematic mistakes in physical reasoning [14,15], and 
this poses a major concern in education and pedagogy of formal physics [16]. 

In the past decade some researchers suggested that intuitive physical reasoning relies on a men-
tal game engine simulation. The simulation approach has old roots [17,18], but the flourish of 
game engines shaped this idea into new forms, with a specific emphasis on how physics engines 
produce good-enough solutions via principled workarounds [5]  (Box 1). In recent years, this ap-
proach has been used to explain reasoning in a wide variety of contexts, including trajectories and 
collisions [19], causality and counterfactuals [6], stability [3], fluids [20], tool-use [21], and cogni-
tive development [22]. The 'physics engine in the head' has also found support in recent neuro-
science work [23,24]. 

Simulation engines are not the only proposal for the computations that underlie our intuitive phys-
ics. Alternatives include impetus theory [16,25], heuristics [26], logical rules [27], qualitative rea-
soning [28], bottom-up features [29], and slot-based deep learning [30]. The debates regarding 
intuitive physics are important and ongoing, but it is not our purpose here to adjudicate between 
studies that emphasize successes versus failures of intuitive physics, or to argue for the very
Box 1. Approximations and limitations in mental simulation 

Engineers looking to create adequate or 'good enough' simulations often face limitations in computational resources. Sim-
ilarly, the mind is under resource limitations in general [101] and in mental simulation more specifically [3,5]. Through con-
vergent conceptual evolution, the same approximations and principled work-arounds that are useful in engineered 
simulation engines may be used by the mind. Such approximations create systematic deviations from a 'perfect' simula-
tion. Different approximations apply to the 'physics' and 'graphics' aspects of the computational pipeline, although many 
of the approximations studied in recent years pertain to physical simulation and include (i) rough 'bodies' that do not per-
fectly overlap with fine-grained shapes, leading to systematic deviations in tracking and causal reasoning [32]; (ii) partial 
simulation, such that only some objects are dynamically moved in a scene, leading to systematic deviations in judgments 
[31]; (iii) capacity limits in the number of objects simulated in parallel [102]; (iv) finite resources that make a simulation more 
coarse past a certain point [103]; and (v) lazy evaluation that does not bother setting the properties of objects unless and 
until required, leading to mental images that contain 'holes' and non-commitment [104]. Many other game engine approx-
imations provide a rich empirical testing ground, such as the distinction between 'dynamic' objects that can be affected by 
forces in a simulation, and 'static' objects that form the backdrop of a scene and which do not need to be updated, or the 
distinction between 'awake' objects that require a recalculation of state at every cycle, and 'asleep' objects are not up-
dated unless participating in a collision or change of constraint. Again, such limitations apply independently of whether a 
scene is 'rendered', and separate considerations or speed-ups apply to the operation of graphical rendering. For example, 
on the speed-up side, many graphical rendering operations can be carried out in parallel, using specialized architecture. 
On the limitation side, finite resources can lead to lower resolution, rendering of smaller parts of the scene, and longer 're-
fresh' rates between rendering cycles.
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existence of mental simulation in intuitive physics (discussed in recent related papers; 
e.g., [4,15,19,31]). We take it that there is sufficient evidence to suggest that people perform rea-
sonably well in many tasks that involve everyday dynamics, that some intuitive physics relies on 
mental simulation, and that game engines provide a decent framework for capturing mental phys-
ical simulation. This is our starting point, and from it we move to the main argument.

The separation between physics and graphics 
To recap: intuitive physics is an important part of everyday reasoning. Game engines are frame-
works that support approximate simulations. Given similar needs and constraints, game engines 
are a good candidate framework for intuitive physics. This approach has found empirical, neural, 
and computational support. Different game engines differ in implementation, but at a high level 
they use the same principled approximations with possible analogs in the human mind. 

Beyond specific workarounds and tailored approximations that help to make a simulation fea-
sible, game engines make a fundamental, ontological separation between physics and 
graphics – between simulation and rendering. To get a sense of this separation, imagine that 
an engineer is asked to create a simple game in which players throw an apple at a pile of 
oranges (Figure 1,  Key  figure; top). Instead of a scientifically accurate simulation (or a hand-
drawn animation), the engineer first constructs a physical scene, placing approximate geometric 
models of the oranges, apple, floor, etc. The scene can be inspected using visualization tools, 
but the underlying representation is amodal. In this geometric-spatial representation, there is barely 
a difference between apples and oranges.

Having set the physical scene, the engineer needs to take a picture of it. This rendering creates 
the graphical display of how the scene appears to a camera located in a specific location 
(Figure 1, top right). Rendering means solving graphical computations related to shading and 
lighting, and requires finer-grained representations of objects. Because graphical and physical 
computations are different, many entities in game engines lead a dual life [32] – they have a phys-
ical representation that carries the information necessary for simulation (position, weight, elastic-
ity, orientation, rough extent, etc.), and a graphical representation necessary for rendering 
(including color, gloss, texture, and exact extent). 

Two crucial issues to note are that physical modeling and graphical rendering in engineered sys-
tems can be independent, and that for many purposes rendering is costly and unnecessary. For 
example, changing the colors and textures of objects would change the rendering of the scene 
without affecting the physical simulation. If the game changed to throwing oranges at apples 
rather than apples at oranges, the underlying physical scene would stay the same, but the 
game would need to change textures and rerender (Figure 1, top right). 

We argue that the human mind also has a division of labor between physics and graphics. These 
are handled by distinct cognitive processes, with distinct types of representations, and distinct 
neural architectures. Such a division is useful a priori: for the purposes of recognition and selec-
tion (distinguishing apples from oranges), 'graphical' visual attributes are crucial. But, for the pur-
poses of tracking and action (throwing or tracking apples), surface-level visual attributes do not 
matter, whereas rough shape, weight, velocity, and location do. 

Beyond theoretical motivations, we next consider how the dichotomy between physics and 
graphics can apply to a variety of findings across cognitive science and neuroscience. To preempt 
a specific objection, we note that 'related-but-not-the-same' divisions – between object identity 
and space, or between features-for-recognition and features-for-action – have been proposed in
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related fields before. We unpack the similarities and differences with these previous proposals as 
they become relevant. 

The physics and graphics division applied to cognition 
The separation we have drawn between physics and graphics can apply either bottom-up (percep-
tion, scene interpretation; e.g., [33]) or top-down (imagery/imagination). We next consider several 
outcomes of a physics–graphics distinction to important, related, yet distinct areas in cognition: the 
imagery debate, the origins of aphantasia, the ventral–dorsal pathways taxonomy, and object 
tracking. 

Simulation versus rendering in imagery and aphantasia 
There have been many sides to the vast, ongoing, decades-long discussion over the format of 
mental imagery (‘The Imagery Debate'). Two major camps include those who argue that mental 
images are propositional, (e.g., [34], and those who argue that mental images are analog and 
picture-like (e.g., [18,35]). Mental imagery goes beyond visual imagery, and includes auditory, 
gustatory, tactile, and action-based imagery. Researchers have also proposed the notion of 'spa-
tial imagery' as distinct from other forms of imagery, with distinct neural (e.g., [18,36,37]) and be-
havioral [38–40] signatures. While details differ by framework regarding what spatial imagery 
captures as compared to visual or object-based imagery, it is generally seen as referring to the 
locations of objects in space, and to abstract spatial relations between objects or object parts. 

Our view is that the 'physics' part of scene construction maps onto, explains, and expands the 
notion of spatial imagery, whereas the 'rendering' operation corresponds to the creation of im-
ages in sensory areas, equivalent to the depiction of an image from a particular perspective. As 
mentioned, previous research has proposed that 'spatial' mental imagery is functionally distinct 
from 'object-based' and 'visual' imagery. However, such spatial imagery is intended to capture 
information about distances between objects and their parts, as well as their relative locations, 
such that it is a distinct operation to imagine 'object O' (visual) or 'in location L' (spatial). This is 
not our proposal. Instead, 'spatial imagery' should be expanded to cover 'physical imagery', 
including all information necessary for reasoning about motion and interaction. Physical-spatial 
imagery encompasses the entire 'scene', including many object properties, including extent. 
Physical imagery is fundamentally object-based, but the objects it traffics in are the geometric 
representations necessary to simulate a scene and its dynamic evolution (Figure 1). Note that, al-
though physical simulation does not involve rendering, it can store non-physical object features 
(e.g., material), just as an engineer's amodal scene representation may note that an apple has 
'red' in its list of properties but without rendering it.
Figure 1. (I) Schematic of the separation between physics and graphics. Paralleling the separation that exists in modern 
simulation engines, we suggest that there is a principled cognitive split between the physical scene representation and the 
rendered graphical representation which rely on different properties and computations. The physical scene representation 
includes rough object extents, locations, and properties needed for simulation and tracking. On the basis of this 
representation, a graphical 'rendering' operation can create a pixel-based representation showing what the scene looks 
like from a particular point of view, and different graphical choices could lead to different renders while keeping the 
physical/spatial scene the same. Note that the physical scene representation is amodal and allocentric (in simulation 
engines as well as in our cognitive proposal); the use of a specific point of view and (gray) colors for the physical scene in 
this figure is strictly to get the point across. (II) Physical scene representations support different operations. The physics 
engine-like non-graphical depiction (top left) consists of a coarse object-based representation of a scene, with 
approximate bodies, locations, forces, and so on. Much of mental imagery (bottom) can be performed via mental physical 
simulation without rendering: forward for prediction, backwards for inference, and conditioned on changed variables to 
support counterfactual reasoning. Other operations include tagging different objects in the perceptual scene to support 
tracking (top right), and querying the properties of objects (e.g., mass) to support judgment (middle right).
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The proposal to divide imagery by physics and graphics aligns in part, and importantly diverges 
from, the two main views on mental imagery. In our view, most visual imagery tasks are solved 
through physical simulation, including scanning, rotation, navigation, and manipulation. The situ-
ation is similar to how engineers do not need to 'render' a scene to simulate it or answer many 
questions about it. Although the pipeline can render images in a pixel-like format (which can 
serve as an input for further bottom-up processing), this rendering and reprocessing is not strictly 
necessary for most tasks. The rendered output itself is mostly epiphenomenal. In this sense, the 
propositional camp was right [41]. However, rendering in our proposal involves scene represen-
tations that are the functional equivalent of objects with spatial extent, similar to the analogical 
representation of a mesh. In this sense, the depictive camp was right [35]. 

It is helpful to see how the distinction explains a specific example. Consider mental rotation, in 
which comparing images takes longer as the angle between the depicted entities grows [2], as 
if people perform stepwise rotation of (depictive) mental images. 

However, propositional accounts point out that mental rotation is cognitively penetrable, is in-
fluenced by task demands [41], and is not reinterpreted: when meaningful shapes appear in 
atypical orientations, mentally rotating them to a typical orientation does not lead to recognition 
[42]. We suggest that mental rotation is done via physical imagery: internally simulating 
geometric transformations of 'wire-frame' analogical entities, creating strong spatial effects 
(including activation of visual-spatial brain areas due to differential attendance to areas of the 
scene [43]) alongside difficulties in tracking surface features during rotation [44]. Graphical ren-
dering is unnecessary, and if used can be performed solely for the final physical/spatial 
representation rather than continuously [45]. 

The distinction between rendering and simulation in mental imagery plays out most clearly in 
explaining cases where people seemingly do not create visual images at all, but can solve visual 
imagery tasks. This is the case of 'aphantasia' – the inability to willfully create visual sensations in 
the mind's eye. First noted more than a century ago [46], in recent years aphantasia has become 
a major topic of research [47–49]. While the initial reliance on subjective reports led some to sug-
gest that 'aphantasia' reflects disagreement about terminology, further research showed people 
with aphantasia differ from the general population in ways suggesting that they truly lack imagery 
[50–53]. 

Given that non-subjective measures across different tasks suggest that aphantasia truly reflects a 
lack of mental imagery, it is surprising how little this lack seems to affect other abilities. Broadly, 
people with aphantasia function much like people without it [54], including in tasks where a widely 
reported strategy in the general population is mental imagery [52,55]. This is underscored by the 
fact that the phenomena of aphantasia drew little attention until the past decade or so, and many 
people with aphantasia report being unaware until a relatively late age that their inner life is differ-
ent from others. People with and without aphantasia also score similarly overall on tasks involving 
spatial imagery or memory reconstruction of the spatial (but not visual) details of images [56,57], 
as well as mental rotation [58]. For mental rotation, there are some small differences in timing [59], 
but these may be the result of the non-simulation stages. 

The pattern of results in aphantasia poses a puzzle. The similarities to the general population 
strongly suggest that people with aphantasia can solve tasks that were typically thought to involve 
mental imagery. The differences strongly suggest that people with aphantasia are not simply mis-
understanding the terminology, but truly lack the ability to create mental images. There have been 
at least two major and opposing proposals for how to resolve this conundrum [60]. The first
6 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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proposal accepts the lack of mental imagery, and suggests that the success of people with 
aphantasia is proof of the existence of multiple strategies for solving various tasks (e.g., [59]): peo-
ple without aphantasia rotate objects in their mind using mental imagery, whereas people with 
aphantasia do ... something else (Figure 2, left). The alternative proposal accepts the successes, 
but insists that the only way to solve such tasks is through mental imagery. The subjective expe-
rience of people with aphantasia and the non-subjective differences they show on some tasks re-
flects intact visual mental imagery, but a lack of higher-level access to these representations 
[61,62]. On this proposal, people with aphantasia actually do create functional visual images to 
rotate objects in the mind, but they are simply unaware of it (Figure 2, middle).

We have a different suggestion, based on the dichotomy between geometry and graphics: 
aphantasia is a 'broken' rendering operation. The situation is akin to an engineer who can create 
a physical model of a scene, but cannot then use rendering to create a pixel-based representation 
showing the scene from a particular perspective, with early visual areas playing the role of the can-
vas (note that this does not mean that the entire graphical 'module' is affected; e.g., [63]). In our 
view, people with aphantasia truly do not have visual imagery representations in the sense of ren-
dered images, and this explains why their top-down activation in early visual areas is weaker and 
less perception-like [64–66]. However, for most tasks that supposedly involve mental imagery, 
they are using the same representations and strategies that people without aphantasia are 
using (Figure 2, right). This view dovetails with the recent proposal of 'blindsight in imagery' 
[67]. But, while that proposal can be taken to mean aphantasia involves images being rendered 
without awareness, for us, people with aphantasia do not have visual imagery that they are
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Figure 2. Schematic summary of several different views of aphantasia. (I) Dual strategies suggest that people without aphantasia use rendered visual mental images 
to solve most tasks associated with subjective visual imagery, such as mental rotation and scanning, whereas people with aphantasia have developed non-visual image-based 
strategies that happen to mostly line up with them [56]. (II) No mental access suggests that both people with and without aphantasia rely on rendered visual images to solve 
various tasks, but people with aphantasia are simply not meta-cognitively aware of their own visual images [58]. (III) Broken rendering, the view we endorse here, suggests that 
people with aphantasia do not create visual mental images, but such representations are not functional in most tasks for people without aphantasia, and that the two 
populations share the underlying, relevant, non-visually experienced physical representation that is used to solve most imagery tasks. 
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unaware of. Instead, people with intact visual imagery solve those tasks not via visual imagery but 
via physical imagery, just like people with aphantasia. 

Our view explains how aphantasia is primarily a lack of top-down visual imagery, and can also ac-
count for the few (but important) cases in which there are measurable non-subjective differences 
between people with and without aphantasia. These include the lack of internally generated atten-
tional templates [68] or priming effects [50], and less-efficient attentional guidance in visual search 
[69], which should rely on the top-down activation of graphically detailed representations. It can 
also account for the finding that fear responses in people with aphantasia are limited to percep-
tually presented visual stimuli and missing for verbal descriptions ([51], also [70]): modules in the 
mind that are attuned to perceptual stimuli need such low-level visual features as input to trigger a 
response. Being unable to (top-down) activate the 'pixel-like' canvas means that modules which 
rely on it for input do not trigger a response. Similarly, other differences between people with 
aphantasia and controls (e.g., [71]) likely point to tasks aided by visual imagery in the latter. How-
ever, the successes in most situations and tasks that are taken to require visual mental imagery 
should cause us to realize that the functional 'imagery' part of these tasks is physical/spatial. 
For most of the imagery tasks that matter and can be tested, the amodal geometric scene repre-
sentation is sufficient. The subjective visual experience is due to an epiphenomenal rendering of 
this scene. In many of the ways that matter, we all have aphantasia. 

Graphics in the ventral stream, physics in the dorsal 
Neuroscience has strongly established that the brain has at least two largely distinct pathways for 
processing visual information – the dorsal and ventral streams. Patient studies, lesions, and neu-
roimaging have demonstrated that the ventral (occipitotemporal) pathway is involved in object 
perception, whereas the dorsal (occipitoparietal) pathway is involved in other types of visually 
guided behavior. Originally, researchers classified the streams as categorization versus localiza-
tion, nicknamed 'what versus where' [72,73]. This was refined given evidence of dorsal involve-
ment in action preparation and object manipulation (e.g., [74,75]), leading to terms such as 
'what versus how' and 'vision for perception versus vision for action'. The exact definition of 
the two pathways is a matter of important open debate (e.g., [76,77]). 

Applying our game engine dichotomy to brain data, we suggest that the distinction should be be-
tween a graphical (ventral) pathway and a geometrical/physical (dorsal) pathway. The role of 
bottom-up processing in the ventral stream is mostly the same, and subserves functions such 
as object recognition. This mechanism can also be activated top-down for visual imagery or de-
tailed attentional templates ('rendering'). The more significant amendment is to the dorsal stream, 
which we suggest is the physics pathway that is in charge of mentally simulating the physics of 
objects. As with many generative models (Figure 1), this processing can be run 'forward' (top-
down) by simulating likely future outcomes from the current state to support action selection 
and execution, as well as prediction (e.g., [3]). The model can also be run 'backward', going 
from the observed kinematics to inferred dynamics [78], and these two directions can also be 
combined to support causal reasoning (e.g., [6]). 

As mentioned, a long tradition describes the dorsal stream as spatial. We accept  that  spatial  informa-
tion has a central role in occipitoparietal processing, but argue that this is due to the relevance of spa-
tial information for physics [79]. In this view, the ventral stream also 'cares' about spatial information, 
specifically the details necessary for graphical rendering and de-rendering from particular points of 
view [80], and the dorsal stream also 'cares' about object representations, in particular coarse 
body approximations that are separate from fine-grained structure [81,82]. Our proposal does not 
mean that all spatial reasoning is physics-based. Although many tasks currently described as 'spatial'
8 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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may rely on a mental physics engine, some tasks might be accomplished via other routes. This would 
explain the mixed findings regarding the connection between physical and spatial abilities [83–85], but 
more work is necessary to directly test how physical and spatial reasoning relate. 

Our suggested division of labor aligns with recent empirical work, specifically fMRI findings of a 
frontoparietal brain network implicated in physical reasoning, representing physical properties, 
and unfolding scenes [8,9,23,79]  (Box 2). The same frontoparietal areas are also activated 
when people engage with tools or plan grasp actions [86,87] which led researchers to describe 
them as "the brain's first-person physics engine" [8], in line with the current proposal that the dor-
sal stream operates a cognitive physical simulation process. 

Object tracking relies on physics, not just on spatiotemporal information 
Researchers have long used [88], and continue to use [89], object tracking as a window into 
human perception, attention, and cognition. A key tool in this research line is the 'multiple object 
tracking' task in which people must keep track of initially marked targets from identical distractors 
throughout motion. People can only track a few objects, depending on the speed and proximity 
of the entities [90–92]. This is intuitive. What is less intuitive is that, even for the few items they do 
track, people struggle to report their features – people are better at indicating whether an item 
was a target than which specific target it was [93–96]. Adding to the puzzle, only some features 
seem to directly matter for tracking. Empirical research separates spatiotemporal and non-
spatiotemporal features, but it is not clear why this separation exists given that it is not locations 
per se that are being tracked [97,98]. 

Instead of spatiotemporal separation, we suggest a physics-based approach (Figure 1). Tracking 
the trajectory of moving items can be accomplished by an approximate physical simulation of 
their future locations (potentially rotating between targets on a single-item serial basis [89]). A
Box 2. Insights from injuries 

Our proposal leads us to expect a dissociation between physics and graphics following specific injuries or neurodegener-
ation. Although research to directly examine this is a topic for future research, several findings align with the proposal. 

One line of support for specialized processing of physical information comes from recent findings on semantic dementia 
[105], a loss of semantic memory that is associated with cortical atrophy in the temporal lobe. Despite a broad deficit 
across verbal and non-verbal semantic tasks, physical knowledge appears to be spared in these patients, who perform 
normally in tests of tool-use, which are in turn strongly related to physical understanding [106]. 

In different but related work, patients with ventral-stream injuries show impairments in both visual recognition and visual 
imagery, but intact performance in types of reaching and grasping [107]. Although this has been interpreted as a separa-
tion between 'object' and 'spatial' processing, people's ability to interact with objects in such aphasias goes beyond a 
general sense of location and seems to include a rough understanding of objects, corresponding perhaps to the notion 
of an approximate body or convex hull in a physics engine. 

Several dorsal-stream deficits also map naturally onto physically relevant information, most obviously motion blindness in 
akinetopsia [108], movement coordination deficits in optic ataxia [109], and problems in executing voluntary movements 
as well as tool-use in apraxia [110–112]. Two other syndromes, hemispatial neglect (a lack of awareness or attention to the 
side contralateral to the brain damage) and simultanagnosia (an inability to perceive more than a single object at a time) 
might reflect a problem in generating or maintaining the scene representation that is central to mental physical simulation. 

In very recent work, it was found that a patient with hemispheric neglect could nevertheless report on various features of 
the 'neglected' side of an object [113]. For example, when seeing a chimeric object made by fusing a red swan (left) and 
blue truck (right), the patient reports that it is a half-red, half-blue truck (correctly processing color but incorrectly ignoring 
the chimeric nature of the object). Such behavior may reflect a neglect of shape, but an interesting possible interpretation 
would be that purely graphical attributes such as color are 'filled in' within a shape representation that is faulty (either be-
cause the rough convex shape is not fully available or because it cannot be integrated with fine shape details), similarly to 
in-painting in current image-generation algorithms.

Trends in Co
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Outstanding questions 
What is the 'point' of rendering, if any? 
Physical simulation is sufficient to solve 
many tasks taken to involve mental 
imagery, and although fine-grained at-
tentional templates may benefit  from  
rendering, this is a small benefit  for  
such a costly operation.

How do the physical and graphical 
systems interact? In engineered 
simulation engines the physical/spatial 
scene is primary and object-centered, 
whereas graphical rendering is sec-
ondary to it, but merging graphical 
and physical information presents a 
new type of binding problem for cogni-
tion. 

How do social modules interact with 
physics and graphics? Nearly all 
engineered simulation engines have 
agents in them which are both 
physical objects as well as sources of 
decisions and actions beyond a 
physical simulation, but it is unclear 
whether agent representations in the 
mind should be seen as part of the 
physical simulation or are separate 
from it. 

What are the developmental 
trajectories for physics and graphics? 
Given the primary of spatial/physical 
simulation in games, it may develop 
earlier than graphical rendering, and 
this option remains open. 

What is the evolutionary trajectory for 
the physics–graphics split? Because 
many of the tasks that seem to rely 
on this split are shared with non-
human animals, it seems unlikely to 
be unique to humans, but further com-
parative work will be necessary to 
show how and when such a split 
emerged. 

How do dreams map onto the 
physics–graphics distinction, if at all? 
Although they are notoriously challeng-
physics-based prediction mechanism for tracking also naturally accounts for the factors that in-
fluence tracking performance: velocity is one of the most important features for simulation, and 
how close items are to each other is especially relevant for collision detection. Further, a physical 
tracking system would mean that surface features are not what people are using for tracking. So, 
it is expected that they fail to notice when these features change, and also fail to report them even 
for items that were successfully tracked. Physics engines also represent objects via coarse body 
approximations –, an approach which people also adopt even in paradigms that are not tradition-
ally linked with intuitive physics, such as change detection [32], and which can be used to suc-
cessfully model human performance in tracking and reasoning tasks [22].

Our suggestion is then that object tracking relies on core physical knowledge more generally 
rather than on spatiotemporal continuity specifically (as has been previously suggested; 
e.g., [99]). Beyond behavioral evidence, this is in line with recent electroencephalography (EEG) 
findings [100] showing that violations of intuitive physics disrupt object tracking, but tracking is 
restored when such violations are explained away, even for events that were identical in all spa-
tiotemporal information and only differed in their high-level physical explanation. 

Concluding remarks 
The distinction between physical simulation and graphical rendering is the backbone of 
engineered systems that aim to mimic the dynamics of the world in real-time. Such a distinction 
is also likely to be a basic organizing principle in mental processing. On the basis of this distinc-
tion, we suggest that much of the functional use of mental imagery is driven by physical simulation 
rather than by graphical rendering, that aphantasia reflects 'broken rendering', that different visual 
streams in the brain map onto the graphics–physics distinction, and that classic and recent puz-
zles in object tracking can be explained on the basis of this organizational principle. The founda-
tional split between physics and graphics is the starting point for much additional research, and 
some directions of particular interest are outlined in the Outstanding questions. To highlight just 
one: if rendering is mostly epiphenomenal, why bother? Why waste time and energy putting 
paint on a canvas that does not matter? While the point is to raise the question rather than answer 
it, we note this would not be the first time an artist did something just for the hell of it. 
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